Что нового?
Пикник ТВ

This is a sample guest message. Register a free account today to become a member! Once signed in, you'll be able to participate on this site by adding your own topics and posts, as well as connect with other members through your own private inbox!

Новости космической науки и технологий

  • Автор темы Автор темы Anonymous
  • Дата начала Дата начала
[Impact]Кольца Сатурна нагревают его атмосферу — «Хаббл» подтвердил наблюдения 40-летней давности[/Impact]

Используя архивные данные и наблюдения телескопа «Хаббл» астроном-ветеран сделал интересное открытие, которое 40 лет было на виду и не привлекло к себе внимания. В своей работе он показал, что кольца Сатурна заставляют атмосферу планеты нагреваться. Такое явление никогда ранее не наблюдалось в Солнечной системе, и оно даёт в руки учёных инструмент для поиска колец у экзопланет в иных звёздных системах.
Посмотреть вложение image.webp
О влиянии частиц колец на верхние слои атмосферы Сатурна в своё время сообщили данные с зонда «Кассини». В конце свей миссии в 2017 году зонд погрузился в атмосферу Сатурна и измерил её составляющие. Данные подтвердили, что многие частицы падают внутрь планеты из колец, но их влияние оставалось неизвестным. Забавно, но воздействие частиц колец на атмосферу Сатурна зафиксировала ещё пара зондов «Вояджер» 40 лет назад, когда пролетала мимо этой планеты. Но тогда учёные сочли сигналы на детекторах помехой и не придали им значение.

Разобраться в вопросе помогли свежие наблюдения за Сатурном с помощью спектрографа телескопа «Хаббл». Целью наблюдений были спектральные линии горячего атомарного водорода в атмосфере планеты. По яркости этих линий можно судить об интенсивности нагрева атмосферы и она явно превышала уровень нагрева от Солнца. Что-то ещё разогревало атмосферу и с явным избытком энергии.

Данные с «Хаббла» помогли откалибровать «шум» в измерениях «Вояджеров», информацию с «Кассини» и данные со старого орбитального телескопа International Ultraviolet Explorer, запущенного ещё в 1978 году и давно выведенного из эксплуатации. Обнаружилось, что избыток ультрафиолета в излучении атмосферы Сатурна присутствовал во всех данных независимо от времени года, орбитального положения Сатурна и активности Солнца. Логичным объяснением этому может быть только одно — частички колец падают в атмосферу и нагревают её, уверен сделавший открытие астрофизик Лотфи Бен-Джаффель (Lotfi Ben-Jaffel) из Института астрофизики в Париже и Лунной и планетарной лаборатории Аризонского университета, автор статьи, опубликованной 30 марта в журнале Planetary Science.

«Мы находимся только в самом начале изучения этого влияния характеристик колец на верхнюю атмосферу планеты. В конечном итоге мы хотим получить глобальный подход, который позволит получить реальные данные об атмосферах далеких миров, — говорит автор. — Одна из целей этого исследования — посмотреть, как мы можем применить его к планетам, вращающимся вокруг других звезд. Назовем это поиском "экзо-колец"».
 
[Impact]Открыты две самые близкие к Земле чёрные дыры — они оказались уникальными[/Impact]

Анализируя данные, полученные европейским космическим телескопом Gaia, астрономы обнаружили две ближайшие к Земле чёрные дыры. Объекты получили названия Gaia BH1 и Gaia BH2 — первая наблюдается в созвездии Змееносца и находится на расстоянии 1560 световых лет от Земли; вторая обнаружена в созвездии Центавра в 3800 световых годах от нас.

Оба объекта по-своему уникальны, и обнаружить их удалось, изучив особенности движения вращающихся вокруг них звёзд-компаньонов: странные колебания указали учёным, что эти звезды вращаются вокруг неких массивных объектов — в обоих случаях их массы составляли около десяти солнечных. Массивные объекты не излучали света, поэтому очевидно, что речь идёт о чёрных дырах.

До недавнего времени все известные астрономам чёрные дыры обнаруживались посредством изучения, обычно в рентгеновском и радиодиапазонах, — его производит поглощаемое объектом вещество. Но Gaia BH1 и Gaia BH2 оказались по-настоящему чёрными, и выявить их удалось исключительно по гравитационным эффектам. Высоты орбит звёзд, вращающихся вокруг этих чёрных дыр, оказались необычно большими, что отличает их от так называемых рентгеновских двойных систем с низкой орбитой звезды вокруг чёрной дыры. Это дало учёным повод предположить, что двойные системы нового типа могут встречаться относительно часто.
https://youtu.be/fHwG10F-u7g
Космический телескоп Gaia оказался подходящим инструментом для обнаружения подобных объектов — он с высокой точностью измеряет положение и особенности движения миллиардов звёзд, что позволяет извлекать важные сведения об объектах, оказывающих на эти звезды гравитационное воздействие. К таким объектам относятся другие звезды, планеты и чёрные дыры.

Следы Gaia BH2 в рентгеновском и радиодиапазонах попытались обнаружить специалисты, работающие с американской космической рентгеновской обсерваторией «Чандра» (Chandra X-ray Observatory) и радиотелескопом MeerKAT в ЮАР. В обоих случаях ничего обнаружить не удалось, и эта информация как раз представляет большую ценность. Звезда-компаньон испускает большие объёмы частиц в виде звёздного ветра, и отсутствие излучения указывает, что чёрная дыра поглощает не так много вещества, поскольку её горизонт событий пересекает небольшое число частиц. И учёные пока не нашли ответа, почему так происходит.
 
[Impact]«Космическую линейку» снова откалибровали по цефеидам — наше представление о Вселенной может быть ошибочным[/Impact]

Наблюдения и расчёты показывают, что Вселенная расширяется, и в каждый момент времени это происходит с одинаковой скоростью в наблюдаемой области и далеко за её пределами. Точнее, так должно быть в теории, но на практике нужный для расчёта скорости коэффициент — постоянная Хаббла — имеет два разных значения в зависимости от метода его вычисления. Это парадокс и учёные сделали его ещё острее.
image.webp
Постоянная Хаббла рассчитывается либо с опорой на реликтовое излучение, либо по данным наблюдений с использованием «космической линейки» — разного рода галактических и внегалактических естественных маяков. Разница в данных получается примерно чуть больше 5,6 (км/с)/Мпк (километра в секунду на мегапарсек или примерно на 3,26 млн световых лет). Казалось бы, мелочь. Но из-за этой «мелочи» математически точную модель многих процессов эволюции Вселенной нельзя построить, включая расстановку точек в поисках тёмной материи и энергии.

Используя данные реликтового излучения — оставшегося после Большого взрыва микроволнового излучения в ранней Вселенной — учёные с помощью наблюдения со спутника «Планк» вычислили, что постоянная Хаббла должна быть 67,4 ± 0,5 (км/с)/Мпк. Наблюдения за звёздами дало иной результат — 73,0 ± 1,0 (км/с)/Мпк, за что в своё время была выдана Нобелевская премия. Возник парадокс, названный «напряжённостью Хаббла». Либо учёные ошибаются в наблюдениях, либо строят ошибочные модели эволюции Вселенной.

Группа астрономов с факультета физики Федеральной политехнической школы Лозанны провела углублённый анализ таких переменных звёзд, как цефеиды. Это звёзды переменной светимости, характеристики которых настолько хорошо поняты, что они играют роль ближних маяков во Вселенной. Это основа «лестницы расстояний» — методики оценки удалённости астрофизических объектов. Эта основа служит для поддержки другой ступеньки — сверхновых в далёких галактиках. Вспышки сверхновых и ряд других данных как раз дают базу для расчёта постоянной Хаббла в наблюдаемой Вселенной. Но начинается всё с цефеид.

Свежий релиз данных астрометрического спутника Gaia позволил учёным заново откалибровать цефеиды в нашей галактике. Это означает, что «космическая линейка» повысила точность до рекордных значений — до погрешности менее ±0,9 %. Это до предела укрепило постоянную Хаббла на отметке 73,0 ± 1,0 (км/с)/Мпк. Вероятность ошибки ничтожна. Если такая же точность будет достигнута в результате измерения постоянной Хаббла по реликтовому излучению, то наше представление о механизме развития и жизни Вселенной придётся менять.
 
[Impact]Учёные намерены пересмотреть признаки обитаемости миров — жизнь способна зародиться и без воды[/Impact]

Для учёных поиски экзопланет и потенциально обитаемых иных миров стали обычным делом. Но мы продолжаем искать инопланетную жизнь по своим меркам — там, где вода может быть в жидкой форме. Для этого экзопланеты сортируют с учётом нахождения в так называемой «зоне обитаемости» своей звезды, а это в целом редкое пока явление и, как считают некоторые специалисты, ставить во главу угла наличие жидкой воды — это неправильно. Искать нужно совсем другое.

В целом жизнь можно описать как непрерывный процесс вычислений или работу с информацией, которая в природе происходит с учётом обратной связи в виде естественного отбора. Информация о биологических организмах на Земле хранится в ДНК, а определённые белки и другие соединения обрабатывают эту информацию. Фактически потенциал жизни — это потенциал вычислений. И вода в этом процессе может играть как решающую роль, если мы рассматриваем земную биологию, так и вовсе может не иметь к нему отношение. В конце концов, есть же и другие растворители?

По мнению авторов статьи, поиск зон обитания необходимо расширить до поиска зон, где могут проходить вычисления. Для возникновения жизни в зонах вычислений необходимо три базовых условия: во-первых, должен быть богатый состав химических элементов; во-вторых, должен быть источник любой энергии для осуществления химических реакций и совсем необязательно солнечной; и, в-третьих, должен быть субстрат для проведения и поддерживания реакций (на Земле это верхний слой литосферы и океаны).

Основываясь на новом подходе жизнь можно искать в более широких рамках и вне установленных зон обитаемости с жидкой водой. Предложенные поправки позволят нам шире посмотреть на проблему возникновения и распространения жизни во Вселенной.
 
[Impact]Астроном-любитель сфотографировал «плазменный водопад» высотой 100 000 км на Солнце[/Impact]

Аргентинский астроном-любитель Эдуардо Шабергер Пупо (Eduardo Schaberger Poupeau) поделился редким изображением «плазменного водопада», высота которого над поверхностью звезды составила около 100 000 км — это как восемь планет размером с Землю, поставленных друг на друга.
Посмотреть вложение image.webp
Зафиксированное астрофотографом явление называется протуберанцем полярной короны — такие протуберанцы возникают между 60° и 70° северной и южной широты, а вещество быстро возвращается к поверхности звезды из-за особо сильных магнитных полей в этой области. Поэтому такие выбросы называют «плазменными водопадами». Плазма при данном явлении находится не в свободном падении, а движется под действием магнитного поля, которое её и выбросило — вниз она направляется со скоростью около 36 000 км/ч, что намного быстрее, чем можно было бы объяснить только действием магнитных сил. Учёные пока не разгадали всех механизмов этого явления.

Предполагается, что во время своего выброса протуберанец полярной короны проходит две фазы: медленную, когда плазма неспешно поднимается вверх, и быструю, при которой она ускоряется к высшей точке. Явления подобного рода представляют интерес не только для физики Солнца, но и для ядерной физики: магнитное поле вблизи солнечных полюсов эффективно сдерживает плазму, и особенности этого процесса могут помочь в проектировании ядерных термоядерных реакторов.

Протуберанцы полярной короны — довольно распространённые явления, хотя их снимки удаётся заполучить достаточно редко. Но по мере нарастания солнечной активности в текущем 11-летнем цикле их частота может дополнительно вырасти. Так, в начале февраля массивный солнечный протуберанец оторвался от Солнца и оказался захвачен огромным и быстрым полярным вихрем, в котором пребывал около 8 часов.
 
[Impact]Астрономы научились находить экзопланеты по траектории звезды[/Impact]

Экзопланеты слишком маленькие и очень далеки, чтобы мы могли увидеть эти миры прямо в оптические телескопы. Поэтому почти все из обнаруженных на сегодня 5300 экзопланет выявлены тем или иным косвенным способом. Тем удивительнее было сделать открытие инопланетного мира с использованием редкого астрономического наблюдения и затем подтвердить его существование прямым наблюдением. Но самое ценное в этом — создание новой методики поиска экзопланет.
image.webp
В астрономии для косвенного поиска экзопланет используется два основных метода: транзитный и доплеровский. В первом случае астрономы ищут повторяющиеся провалы в блеске звёзд, когда экзопланета перекрывает её свет при проходе по диску в орбитальном движении, а во втором случае фиксируются повторяющиеся изменения в длине волны света звёзд — так называемое доплеровское смещение. Пара звезда-планета вращается вокруг общего центра масс и звезда то приближается в нашу сторону, то движется от нас, что находит отражение в её спектре. В обоих случаях становится возможным обнаружить очень близкие к звёздам экзопланеты, что мешает разглядеть их в оптические телескопы на фоне яркого света материнских звёзд.

Но заметить «танец» звезды на небе можно и другим способом — астрометрическим. Измеряя точное положение звёзд в небе и их радиальную скорость, можно обнаружить характерное кружение звёзд вокруг линии, по которой она должна двигаться при вращении вокруг центра галактики.


Если в системе звезды есть достаточная по массе экзопланета или несколько экзопланет, то звезда будет двигаться характерной «змейкой». Такие данные обнаружились в наблюдениях европейской космической станции Gaia «Гайя». «Гайя» точнейшим образом измеряет координаты звёзд и их скорости движения относительно Земли. Фактически она строит трёхмерную карту звёзд в Млечном Пути в динамике, что даёт массу информации для самых разнообразных открытий.

Ряд звёзд уже привлёк внимание астрономов и одна из них — HIP-99770 — была изучена на предмет наличия экзопланеты. Из данных «Гайи» стало понятно, в какую точку Вселенной надо смотреть и с помощью оптических телескопов Субару и обсерватории Кека на Гавайях в указанной области пространства у звезды HIP-99770 была визуально обнаружена экзопланета, получившая название HIP-99770b.

Таким образом, астрометрический метод дал звезду-кандидата на систему с экзопланетой, и проведённое после этого прямое наблюдение обнаружило там инопланетный мир. Из данных «Гайи» и базы более старой европейской астрометрической орбитальной обсерватории Hipparcos выделены ещё около 50 звёзд-кандидатов, «петляющих» по небу в своём галактическом движении, где также будут проводиться оптические поиски экзопланет. Эти исследования помогут отработать новую методику поиска инопланетных миров.

Испытанный учёными метод позволяет открывать экзопланеты на удалённых орбитах, что ценно само по себе. Экзопланета HIP-99770b имеет 14–16 масс Юпитера и в 1,05 раза больше радиуса Юпитера. Она вращается вокруг звезды массой в две солнечные массы, поэтому находясь от неё в три раза дальше Юпитера (на удалении 15 а. е.) получает примерно столько же энергии, как Юпитер.

Прямое наблюдение экзопланеты в телескоп вместе с астрометрическим методом позволило не только получить данные о размере, плотности и диаметре экзопланеты, но и дало увидеть облака в её атмосфере и даже что-то типа пояса Койпера вокруг местной звезды. Без сомнения, учёные ещё не раз будут изучать такой интересный объект, пытаясь получить о нём и его атмосфере больше данных. В конце концов, когда-нибудь будет обнаружен и близнец Земли. И чем больше у нас будет способов поиска таких экзопланет, тем быстрее это произойдёт.
 
[Impact]Троянские астероиды Нептуна оказались краснее других астероидов в Солнечной системе — это поможет в изучении эволюции таких тел[/Impact]

Международная команда астрономов, оценив сопровождающие Нептун так называемые троянские астероиды, установила, что все они имеют красный цвет разной степени насыщенности, краснее, чем большинство астероидов в Солнечной системе. Результаты исследования опубликовали в журнале Monthly Notices Королевского астрономического общества Великобритании. Наблюдение позволяет учёным делать некоторые выводы об истории Солнечной системы.
image.webp
Троянские астероиды представляют собой облако небесных тел, сопровождающих Нептун на параллельной орбите вокруг Солнца. Они находятся в гравитационно стабильном положении между Нептуном и Солнцем и — между Нептуном и карликовой планетой Плутон. Первый из них открыли в 2001 году, пока описаны менее 50 подобных небесных тел.

Причина не в том, что таких астероидов мало, вероятно, их просто трудно обнаружить на большом удалении от Нептуна, поскольку размеры в поперечнике составляют всего 50-100 км, а находятся они на орбитах в 4,5 млрд км от Солнца. Для обнаружения и исследования использовались самые крупные и мощные телескопы Земли.

По словам ведущего автора исследования Брайса Болина (Bryce Bolin) из подведомственного NASA Центра космических полётов Годдарда, в новой научной работе число исследованных объектов значительно увеличилось. Команда объединила данные, собранные за последние два года четырьмя телескопами — оборудованием Паломарской обсерватории в Калифорнии, «Джемини север» и «Джемини юг» на Гавайях и в Чили, а также телескопом Кека на Гавайях. Исследователи отследили 18 троянских астероидов и оценили их цвет. Оказалось, что они краснее большинства астероидов Солнечной системы, включая даже насыщенные красные варианты.

image.webp
Такой цвет, по данным учёных, свидетельствует о том, что сопровождающие Нептун астероиды богаты нестабильными компонентами вроде аммиака и метанола, лёд из которых очень чувствителен к теплу и быстро переходит в газообразное состояние, когда на него в достаточной степени воздействует солнечная радиация. Из-за этого астероиды ближе к Солнцу имеют менее красный оттенок, поскольку их аммиак и метанол давно испарились. Если ближе к Солнцу астероиды лишь слегка красноваты, то за орбитой Плутона у них тёмно-красный цвет.

Более того, похоже, что некоторые астероиды сформировались на заре формирования Солнечной системы ещё дальше от Солнца, чем они находятся сегодня и только позже переместились ближе к Нептуну, попав в его гравитационную ловушку. Изучение этих объектов может помочь понять, как формировались астероиды в молодой Солнечной системе и как изменился их состав за последние 4,6 млрд лет.
 
[Impact]В Индии построят детектор гравитационных волн — это на порядок повысит точность определения источников событий в небе[/Impact]

Кабинет министров Индии одобрил строительство в стране собственного детектора гравитационных волн. Объект будет построен по проекту американского детектора LIGO, который в 2015 году первым обнаружил гравитационные волны, предсказанные Эйнштейном 100 лет назад. Индийский детектор LIGO закроет слепые зоны для гравитационных наблюдений на небе и в целом на порядок повысит точность локализации событий во Вселенной международной сетью детекторов.

Власти Индии выделят на реализацию проекта около $320 млн. Строительство будет вестись недалеко от города Аундха в индийском штате Махараштра. Это будет комплекс зданий, включая L-образный интерферометр с 4-километровыми рукавами. Проекты зданий уже завершены, дороги к объекту подведены, часть оборудования — вакуумные камеры — испытаны в лаборатории. Поскольку проект LIGO-India станет калькой с проекта LIGO-USA, то с передачей технологий и проектной документацией всё хорошо. Индийская сторона просто должна следовать проверенным рекомендациям и повторить уже реализованный проект.

Фактически LIGO-India — это сотрудничество между лабораторией LIGO, которая работает под руководством Калтеха и Массачусетского технологического института и финансируется Национальным научным фондом (NSF), и индийскими Центром передовых технологий им. Раджи Раманны (RRCAT), Институтом исследования плазмы (IPR), Межуниверситетским центром астрономии и астрофизики (IUCAA) и Управлением строительных услуг и управления недвижимостью (DCSEM) Министерства атомной энергии. Данная новость, к слову, опубликована на сайте Калтеха (Калифорнийского технологического института).

Интерферометр LIGO способен различить разность фаз в двух опорных лазерных лучах, что укажет на искривление пространства-времени. Это будет означать, что через детектор прошла гравитационная волна, которая изменила длину пробега лазерных лучей. Чем выше точность наблюдений, тем точнее можно определить на каком участке неба произошло гравитационное событие — слияние массивных чёрных дыр или нейтронных звёзд. Точная локализация явления позволит направить туда другие телескопы — оптические, рентгеновские и радио и воочию убедиться, что там произошло ровно то, что зафиксировали детекторы.

Детектор LIGO-India только за счёт своего географического положения на порядок увеличит точность локализации гравитационных явлений. Он дополнит существующую сеть гравитационных детекторов из двух американских установок LIGO, итальянской Virgo и японской KAGRA. Первые измерения на детекторе LIGO-India ожидаются к 2030 году.
 
[Impact]Сверхновые способны уничтожать жизнь на планетах огромными дозами радиации на больших расстояниях[/Impact]

Используя данные рентгеновской обсерватории NASA «Чандра» (Chandra) и других телескопов учёные обнаружили неизвестную ранее угрозу для жизни на планетах земного типа. На определённой фазе процесса образования сверхновых исходящее от области взрыва рентгеновское излучение способно уничтожить биологическую жизнь на планетах в радиусе до 100 световых лет и больше. Раньше это явление не принималось во внимание. Но теперь к нему надо отнестись со всей серьёзностью.
Посмотреть вложение image.webp
Традиционно опасными для всего живого периодами в явлении сверхновых считались гамма-излучение в первые дни и месяцы после взрыва, а также поток высокоэнергичных частиц, приходящий через сотни и тысячи лет.

Новые наблюдения показали, что в процессе взрыва сверхновой возникает ещё одна угроза — поток рентгеновского излучения, который возникает в результате удара взрывной волны сверхновой звезды о плотный газ, окружающий взорвавшуюся звезду. Генерируемый процессом поток излучения может достичь обитаемой планеты в течение месяцев или лет и будет длиться десятилетиями, что приведёт к вымиранию биологической жизни на планетах земного типа.

Полученные данные проверены при наблюдении 31 сверхновой и последствий их взрывов. Наблюдения проводились в основном с помощью рентгеновской обсерватории NASA Chandra, и миссий Swift и NuSTAR, а также XMM-Newton Европейского космического агентства. Из данных следует, что планеты могут подвергнуться смертельным дозам радиации, находясь на расстоянии около 160 световых лет. На составном изображении ниже показаны четыре сверхновые в исследовании (SN 1979C, SN 1987A, SN 2010jl и SN 1994I).


Среди представленных в наборе изображений четырёх сверхновых объект SN 2010jl произвёл наибольшее количество рентгеновского излучения. По оценкам авторов, эта сверхновая обеспечила смертельную дозу рентгеновского излучения для планет земного типа, находящихся на расстоянии менее 100 световых лет от неё.

Длительный поток рентгеновского излучения может серьёзно изменить химический состав атмосферы планеты. В частности, для похожей на Землю планеты этот процесс может привести к уничтожению значительной части озона, который защищает жизнь от опасного ультрафиолетового излучения звезды-хозяина. Это также может привести к гибели широкого спектра организмов, особенно морских, находящихся в основании пищевой цепи, что приведет к вымиранию.

В изменённом составе атмосферы начнёт преобладать диоксид азота, что проявит себя в виде образования коричневой дымки в воздухе. Растения на суше начнут погибать, и процесс рискует стать необратимым (это явление проиллюстрировано на заглавном изображении).

На Земле найдены изотопы, образование которых учёные объясняют избыточным гамма-излучением — это явный признак работы сверхновых. Тем самым последствия от взрывов могли сказаться на Земле в период от 2 до 8 млн лет назад. Оценки дают данные, что эти сверхновые находились на расстоянии от 65 до 500 световых лет от Земли.

В настоящее время Земля и Солнечная система находятся в безопасном пространстве с точки зрения потенциальных взрывов сверхновых, но масса других планет в Млечном Пути таковыми не являются. Поэтому такие высокоэнергетические события рискуют значительно сократить области в нашей галактике, известные как Галактическая зона обитаемости, где потенциально может существовать биологическая жизнь.

Авторы настоятельно рекомендуют проводить последующие наблюдения за взаимодействующими сверхновыми в течение месяцев и лет после взрыва, что позволит нам полнее оценить их опасность и степень влияния на близлежащие миры. Не стоит искать жизнь в радиационной пустыне, лишних ресурсов на это попросту нет.
 
[Impact]Астрономы обнаружили новую опасность для планет подобных Земле[/Impact]
Photo-111-640x360.jpg

 Недавние исследования, проведенные астрономами с использованием данных рентгеновской обсерватории НАСА «Чандра» и других телескопов, показали, что на планетах, аналогичных Земле, существует новая угроза жизни – фаза, когда интенсивные рентгеновские лучи от взорвавшихся звезд могут воздействовать на планеты на расстоянии более 100 световых лет. Эта угроза связана с взрывной волной сверхновой, которая поражает газ, окружающий взорвавшуюся звезду. При таком столкновении может произойти большая доза рентгеновского излучения, которое может достигнуть планеты через несколько месяцев или лет после взрыва и продолжаться десятилетиями. Это воздействие может спровоцировать вымирание на планете.
Исследование, описывающее эту угрозу, основано на рентгеновских наблюдениях 31 сверхновой и их последствий. Ранее большинство исследований сосредоточивалось на двух периодах опасности: интенсивном излучении, производимом сверхновой в течение нескольких дней и месяцев после взрыва, и энергичных частицах, которые прибывают через сотни лет после этого.
Рентгеновские лучи могут серьезно изменить химический состав атмосферы планеты. На Земле этот процесс может уничтожить значительную часть озона, который защищает жизнь от опасного ультрафиолетового излучения звезды-родителя. Это также может привести к гибели морских организмов, особенно составляющих основу пищевой цепи, что приведет к вымиранию.
В результате смертельного облучения рентгеновскими лучами и воздействия ультрафиолетового излучения звезды-родителя на планете может образоваться большое количество диоксида азота, что может привести к обеззеленению земельных массивов и повреждению растений.
 
[Impact]«До 50 падающих звёзд в час»: метеорный поток эта-Аквариды достигнет пика в начале мая[/Impact]

Стало известно, что активность метеорного потока эта-Аквариды (майские Аквариды) достигнет пика в ночь на 6 мая. Астрономы ожидают до 50 «падающих звёзд» в час. Об этом пишет информационное агентство ТАСС со ссылкой на пресс-службу Московского планетария.

Сам же поток эта-Аквариды из созвездия Водолей наблюдается в период с 15 апреля по 27 мая. Помимо максимальной активности, которая будет достигнута в одну из ночей, астрономы выделяют так называемый широкий максимум, когда в небе можно будет увидеть 30 и более вспышек в час. Этот период продлится с 3 по 10 мая.

«Пик активности <…> [потока эта-Аквариды] произойдёт в ночь с 5 на 6 мая. По прогнозам Международной метеорной организации, ожидается до 50 метеоров в час», — сообщил представитель пресс-службы планетария.

Источником метеоров, которые представляют собой вспышки от сгорающих в атмосфере небольших небесных тел, является пылевой след от кометы Галлея. Наша планета проходит через него весной и осенью каждого года. Весной с поверхности Земли можно наблюдать поток Аквариды, а осенью — Ориониды. Оба потока характеризуются яркими и длинными следами, оставляемыми метеорами на ночном небе.

«Радиант майских Акварид находится в созвездии Водолея и к утру виден на юго-востоке невысоко над горизонтом. <…> Условия наблюдения потока в этом году — неблагоприятные, так как пик происходит в полнолуние (05.05.2023). Полная Луна существенно помешает наблюдению метеоров», — отметили астрономы.
 
[Impact]Учёные открыли молодую экзопланету размером с Юпитер — она создаёт рябь на газопылевом диске[/Impact]

Группа астрономов во главе с Иэном Хэммондом (Iain Hammond) из Университета Монаша (Австралия) подтвердила открытие молодой экзопланеты размером с Юпитер — её присутствие удалось зафиксировать по следу в газопылевом диске, окружающем звезду HD 169142. Он напоминает след от движущейся по воде лодки.
image.webp
Окружающее звезду тонкое круглое облако — это так называемый протопланетный диск. Внутри подобных структур холодные плотные глыбы сталкиваются друг с другом, в результате чего под действием гравитационных сил формируются планеты. Протопланетный диск вокруг HD 169142 разделён на три кольца, промежутки между которыми объясняются присутствием молодых, недавно сформировавшихся планет — протопланет.

Около 4,6 млрд лет назад протопланетным диском было окружено и Солнце. В конечном итоге он разрушился, а из него образовались планеты солнечной системы, в том числе Земля. Поэтому изучение таких объектов, молодых звёзд и планет, важно для понимания процессов, которые привели к формированию нашей звёздной системы.
https://youtu.be/xAT8zttRAY8
Учёные в течение последних лет производили наблюдения за звездой HD 169142 и её окрестностями в Очень большой телескоп (VLT) на горе Серро-Паранале в чилийской пустыне Атакама — это один из самых передовых оптических телескопов на Земле. Наиболее полезным в открытии оказался инструмент спектро-поляриметрического высококонтрастного исследования экзопланет (SPHERE), представляющий собой систему адаптивной оптики. Инструмент помог установить, что планета размером с Юпитер вращается вокруг HD 169142 на расстоянии, несколько превышающем расстояние от Солнца до Нептуна.

При работе SPHERE блокирует свет звезды в центре протопланетного диска, увеличивая тем самым контрастность изображения; разрешение же увеличивается за счёт коррекции размытия, которое вызывает атмосферная турбулентность. Учёные считают, что глубокое исследование звёздной системы HD 169142, расположенной на расстоянии около 375 световых лет от Солнца, поможет лучше понять механизмы формирования газовых гигантов, подобных Юпитеру.
 
[Impact]Обнаружено самое близкое к Земле поглощение звезды чёрной дырой — это произошло буквально на «нашем заднем дворе»[/Impact]

Учёные Массачусетского технологического института сделали интереснейшее открытие. Они обнаружили событие разрыва звёзды чёрной дырой сравнительно недалеко от нас — всего в 137 млн световых лет от Земли. Это самое близкое событие в истории наблюдений. Более того, впервые наблюдение сделано в инфракрасном диапазоне, чего никогда не было. Новшество открывает путь к открытиям массы событий приливных разрушений, которые раньше были пропущены.

Слева направо: научное изображение объекта во время события, эталонное изображение (по старым наблюдениям), разность в яркости, что показывает само событие, и галактика-хозяин события в оптическом диапазоне. На графиках изменение кривой блеска в спектре диапазонов.

Астрономам известно около 100 событий приливных разрушений звёзд чёрными дырами в центрах далёких галактик. Считается, что такие события происходят раз в 10 тыс. лет. Пролетающая мимо чёрной дыры звезда захватывается гравитацией чёрной дыры и разрывается ею. Вещество звезды падает на дыру и вызывает вспышку энергии, которая легко наблюдается в рентгеновском и ультрафиолетовом или видимом диапазоне. Собственно, в этих диапазонах и велись наблюдения за событиями приливных разрушений.

Учёные из МТИ решили отступить от практики и взялись поискать признаки приливных разрушений в архивных данных телескопов с инфракрасными датчиками. В данных телескопа NASA NEOWISE такие данные были найдены и событие получило свой идентификатор — WTP14adbjsh. Вспышка была зафиксирована в конце 2104 года и достигла максимальной яркости к 2015 году, после чего её интенсивность начала спадать. Моделирование показало, что это не сверхновая. С большой вероятностью динамика изменения яркости события соответствует явлению приливного разрушения звезды чёрной дырой.

Удивительно, но событие WTP14adbjsh не нашло отражения в рентгеновском и оптическом диапазоне. По мнению исследователей, так вышло по той причине, что галактика NGC 7392, в центре которой сверхмассивная чёрная дыра разорвала звезду, относится к звездообразующим (голубым) галактикам. В таких галактиках много пыли и газа, которые поглощают коротковолновые излучения, но ярко светятся в инфракрасном диапазоне. Телескоп «Джеймс Уэбб» наверняка наведут в сторону этого объекта.

Сделанное учёными открытие приведёт к появлению новой методики поиска приливных разрушений звёзд в инфракрасном диапазоне. Может так статься, что этих событий намного больше, чем мы до сих пор считали. Они были крайне редки в звездообразующих галактиках, но теперь учёные знают, как отбросить пелену завесы над ними.

Наконец, событие приливного разрушения, обнаруженное астрономами МТИ, оказалось всего на 25 % удаления по сравнению с предыдущим самым близким к нам подобным событием. Оно фактически произошло на нашем «заднем дворе», как выразились авторы работы. В этом мало хорошего. Это, конечно, не сверхновая, но если вспышка от поглощения произойдёт ближе и будет направлена на Землю, наша планета может получить опасную дозу радиации. А масштаб потенциально бедствия лучше понимать заранее.
 
[Impact]Наша галактика Млечный Путь имеет все шансы породить квазар, чему получены убедительные доказательства[/Impact]

Около 60 лет назад астрономы обнаружили ярчайшие объекты во Вселенной, которые назвали квазарами. Позже стало понятно, что это свечение испускают активные галактические ядра. Точнее, это явление сверхактивности сверхмассивных чёрных дыр в центрах галактик. Но уверенно ответить на вопрос о механизме рождения квазаров учёные были не готовы. Новое исследование собрало убедительные доказательства для подтверждения одной из теорий рождения квазаров.

Так, группа специалистов из университетов Шеффилда и Хартфордшира опубликовала работу, которая доказывает, что источником квазаров являются столкновения галактик. Эта гипотеза выдвигалась и раньше, однако теперь под неё положен прочнейший фундамент из более чем сотни наблюдений за целевыми галактиками и квазарами.

С помощью телескопа им. Исаака Ньютона в Ла-Пальме астрономы в деталях изучили структуры 48 галактик с квазарами и более 100 без них. Они искали признаки искажений в структурах галактик, которые указали бы на предыдущие столкновения пар из них. Выяснилось, что 65 % галактик с квазарами имеют признаки столкновений в прошлом. Среди галактик без квазаров признаки столкновений выявлены только у 22 из более чем 100 объектов. Простые вычисления показывают, что галактики с квазарами имеют в три раза большую частоту проявления признаков столкновений. Из этого можно сделать вывод, что тесные гравитационные взаимодействия пары галактик с большой вероятностью породят квазар, хотя это происходит не со 100-процентной гарантией.

Источником яркости квазаров в широком диапазоне электромагнитных волн являются сверхразогретые внутренние границы аккреационных дисков вокруг сверхмассивных чёрных дыр. В этих областях вещество подает на чёрную дыру и происходит колоссальное выделение энергии на уровне сияния триллионов звёзд. При естественной эволюции галактики сверхмассивная чёрная дыра в её центре постепенно пожирает вещество и ведёт себя относительно спокойно. Когда две галактики с такими дырами входят во взаимодействие — сталкиваются, большие объёмы межзвёздного газа начинают перераспределяться и, в итоге, падают на чёрные дыры в центрах галактик-хозяев. Это как плеснуть бензин в догорающий костёр.

Рождение квазара ведёт к фатальным последствиям для галактики-хозяина. Его активность выталкивает пыль и газ за пределы галактики и развеивает внутри неё. Это снижает активность звезообразования и может совсем остановить процесс появления новых звёзд в галактике. Нашу галактику Млечный Путь ждёт похожая судьба. Примерно через 5 млрд лет она столкнётся с галактикой Андромеда. Учёные не считали это угрозой для жизни на Земле, например, всё-таки звёзды находятся достаточно далеко друг от друга, но если в центре нашей галактики вспыхнет квазар, для чего теперь найдены все основания, всё может повернуться иначе.
 
[Impact]Гигантская протогалактика в молодой Вселенной формирует звёзды из «вторсырья», выяснили учёные[/Impact]

Международная группа учёных изучила гигантскую туманность, которая располагается среди скопления молодых галактик и поглощает выброшенное последними вещество. Процесс наблюдается в области, возраст которой составляет всего 3 млрд лет после Большого взрыва, то есть в весьма молодой вселенной (возраст Вселенной оценивается в 13,8 млрд лет). Это является очередным свидетельством того, что галактики формируют звёзды, обмениваясь веществом с ближайшим окружением.
image.webp
Художественное изображение формирования скопления галактик в ранней Вселенной. Источник изображения: ESO/M. Kornmesser

Ранее галактики независимо от размера считались плавающими в космической пустоте островами материи, но последние исследования показали, что их окружают огромные облака газа и пыли, которые трудно увидеть. Сейчас превалирует мнение, что эти облака являются частью гигантской космической сети, включающей в себя и тёмную материю — она связывает галактики, обеспечивая их водородом, из которого формируются новые звёзды и галактики.

Недавно учёные обнаружили, что такие облака играют ключевую роль в переработке вещества, помогая запускать так называемые галактические фонтаны. Погибающие со взрывами сверхновых массивные звезды выбрасывают в пространство колоссальные объёмы вещества, которое иногда вылетает за пределы галактик и образует ореолы горячего газа над и под их дисками. Согласно одной из теорий, облака горячего газа, которые простираются на тысячи световых лет за пределы галактики, охлаждаются и «проливаются дождём» обратно на неё, за счёт чего продолжается звездообразование. Эта гипотеза объясняет, почему в галактиках этот процесс идёт долгое время, несмотря на кажущиеся ограниченными запасы вещества.


Моделирование допускает возможность такой рециркуляции галактик, но подтвердить этот процесс непросто — галактики ориентированы по-разному, и наблюдать космический дождь действительно сложно. Прорыва удалось добиться при наблюдении в телескопы Кека и «Субару» на Гавайях туманности «Мамонт-1» (MAMMOTH-1) — протогалактики почти в 11 млрд световых лет от Земли. Туманность была открыта в 2017 году, но последние её изображения показывают, что она поглощает вещество из ближайших окрестностей через как минимум три газовых потока — эти потоки подсвечивают фрагмент космической сети, соединяющей галактики и их ближайшее окружение. При этом два потока указывают на квазар — яркий объект со сверхмассивной чёрной дырой, о присутствии которой в этой туманности только подозревали.

Учёные также обнаружили, что потоки вещества вокруг туманности богаты углеродом, который может формироваться только внутри звёзд, образующих из водорода и гелия металлы — так в астрономии называют все элементы тяжелее водорода и гелия. Присутствие углерода в туманности, размер которой составляет 300 тыс. световых лет, подтверждает гипотезу об активной системе галактической рециркуляции, при которой богатый металлами газ становится строительным материалом для формирования нового поколения звёзд. Этот газ охлаждается быстрее первозданного водорода, повышая тем самым эффективность звездообразования.

Свету требуется продолжительное время, чтобы преодолеть больше расстояние, и мы видим туманность «Мамонт-1» такой, какой она была 11 млрд лет назад. Размер группы галактик, к которой она принадлежит, тогда был 50 млн световых лет, но к настоящему моменту она, вероятно, ужалась до 1 млн. Для сравнения группа галактик, в которую входит наш Млечный Путь, имеет размер 10 млн световых лет. В Млечном Пути тоже есть галактические фонтаны, но астрономы точно не знают, сколько их.
 
[Impact]«Хаббл» запечатлел зарождение планет вокруг звезды — система напоминает Солнечную[/Impact]

Космический телескоп «Хаббл» (Hubble) обнаружил свидетельства появления планет из протопланетного диска, состоящего из пыли и газа, и окружающего молодую звезду. Событие произошло довольно рядом — в 196 световых годах от нашей Солнечной системы в созвездии Гидры.
image.webp
Последовательность изображений, сделанных в 2016 и 2021 годах, показывает изменения в тенях, окружающих звезду возрастом 10 миллионов лет, что, по мнению исследователей, является признаком раннего развития планет. TW Hydrae — звезда главной последовательности, масса которой составляет примерно 80 % массы Солнца, а радиус — 111 % радиуса Солнца. Поскольку система наклонена на 90° по отношению к нам, это даёт астрономам возможность подробно рассмотреть накопление материи вокруг звезды, возраст которой составляет 0,2 % возраста Солнца.

Набор изображений, сделанных в 2016 году, выявил тени на дисках, окружающих молодую звезду, которые учёные интерпретировали как внутренний диск, наклонённый относительно внешнего диска, блокирующий свет от звезды. Одно из объяснений, выдвинутых исследователями, заключается в том, что зарождающаяся планета вызвала разницу в выравнивании диска. Снимки, сделанные пятью годами позже, наводят на мысль о раннем развитии более чем одной планеты. Результаты были опубликованы в Astrophysical Journal на этой неделе.

Джон Дебес (John Debes), исследователь Европейского космического агентства в научном институте космического телескопа Хаббл в Балтиморе, был ведущим автором статьи. Он отметил: «Мы предполагаем, что две тени, вращающиеся вокруг звезды с разной скоростью – это две невидимые планеты, которые втягивают пыль на свои орбиты, создавая различия в системе всего за несколько лет. По всей видимости, две планеты должны быть достаточно близко друг к другу. Если бы одна двигалась намного быстрее другой, это было бы замечено в более ранних наблюдениях».

Исследовательская группа предполагает, что две планеты могут находиться на том же расстоянии от своей звезды, что и Юпитер от Солнца, так как орбитальный период теней предполагает такое расстояние. Наклоны дисков — 5-7° — тоже сопоставимы с нашей Солнечной системой. «Это соответствует типичной архитектуре Солнечной системы» — заявил Дебес.
 
[Impact]Уже в 2025-м богатые туристы отправятся в стратосферу на надувном шаре[/Impact]

В сфере космического и околокосмического туризма скоро, возможно, появится новая ниша. Французская компания Zephalto договорилась о сотрудничестве с местным Национальным центром космических исследований (CNES). Компания планирует организовать полеты туристов в герметичных капсулах в стратосферу, на высоту 25 км — доставка близко к космосу будет осуществляться надувными шарами.

Ожидается, что полёты начнутся уже в 2025 году, веб-сайт компании принимает предварительные заказы на места в капсулах. Шар сможет поднять шесть пассажиров и двух пилотов, взлёт будет осуществляться с территории французского космопорта. В будущем компания намерена осуществлять запуски со всех населённых континентов. Стоит отметить, что полёты рассчитаны на обеспеченных туристов и будут стоить порядка $132 тыс. за человека, а в полёте путешественникам будут подаваться блюда, достойные ресторанов с «мишленовскими» звёздами. Более того, туристы будут иметь доступ к Wi-Fi и смогут наслаждаться видами, ранее доступными только космическим путешественникам.

Оформление капсулы разрабатывается в минималистичном стиле одним из популярных французских дизайнеров — предполагается, что внутренняя отделка не должна отвлекать от видов за иллюминатором. По данным Bloomberg, на взлёт и посадку будет уходить по полтора часа, на максимальной высоте туристы будут находиться около трёх часов, всего — шесть часов в полёте. Фактически на такой высоте путешественники будут находиться во тьме космоса из-за почти полного отсутствия атмосферы, при этом в капсуле будет сохраняться гравитация.

Пока компания выполнила три пилотируемых тестовых полёта стратосферных шаров, хотя ещё ни разу — на максимальной высоте, на которую будут попадать туристы. Для начала коммерческих полётов ей потребуется сертификат Европейского агентства авиационной безопасности (EASA) на роль «коммерческого авиалайнера». Фактически же шар будет достигать высоты, втрое большей, чем высота полётов обычных пассажирских самолётов. Всего планируется осуществлять до 60 полётов в год.

В отличие от варианта Neptune One американской Space Perspective, аппарат Zephalto будет совершать посадку не на воду, а на сушу. При этом Neptun One сможет подниматься на высоту до 30,5 км. Тем не менее ни один аппарат не позволит преодолеть т. н. линию Кармана — международно признанную границу космоса в 100 км от Земли.

Недавно завершилось кругосветное путешествие ещё одного стратосферного воздушного шара — проект NASA предусматривал полёт вокруг Антарктиды. Шар оснащён мощным телескопом и продолжает полёт, выполнив основную миссию.
 
[Impact]У Сатурна открыли ещё 28 спутников — теперь их 118 и это рекорд в Солнечной системе[/Impact]

С 4 мая сайт Центра малых планет Международного астрономического союза начал активно публиковать подтверждения открытий спутников Сатурна. К настоящему моменту число новых объектов превысило 28 — в результате Сатурн обошёл Юпитер и завоевал звание планеты с самым большим числом спутников в Солнечной системе.
Посмотреть вложение image.webp
Череда открытий связана с деятельностью поисковой программы Университета Британской Колумбии (Канада) в 2019–2021 годах. В качестве основного инструмента использовался наземный телескоп CFHT. Перед открытиями учёные предсказали, что в окрестностях планеты может находиться крупная популяция нерегулярных спутников — тех, чьё движение отличается от общих правил.

Считается, что нерегулярные спутники формируются не из той же части протопланетного диска, что сама протопланета, а захватываются извне её гравитационным полем. Из-за этого орбиты нерегулярных спутников имеют более вытянутую форму и больший наклон по отношению к Сатурну. Исходя из характеристик орбит, новые спутники были причислены к инуитской и скандинавской группам, а диаметры их невелики — от 2 до 5 км. При этом учёные отметили, что вокруг планеты также могут вращаться несколько тысяч более мелких объектов с диаметром менее 1 км. Для сравнения, самым крупным её спутником является Титан с диаметром 5149 км.

Новым спутникам Сатурна присвоены следующие имена: S/2019 S 13, S/2020 S 6, S/2019 S 12, S/2006 S 14, S/2019 S 11, S/2004 S 47, S/2019 S 10, S/2004 S 46, S/2019 S 9, S/2019 S 8, S/2019 S 7, S/2006 S 13, S/2019 S 6, S/2006 S 12, S/2006 S 11, S/2004 S 45, S/2004 S 44, S/2004 S 43, S/2019 S 5, S/2006 S 10, S/2004 S 42, S/2007 S 6, S/2020 S 5, S/2020 S 4, S/2004 S 41, S/2019 S 4, S/2020 S 3, S/2007 S 5.

По итогам пополнения Сатурн стал планетой с самым большим числом спутников в Солнечной системе — теперь у него их 118. А Юпитер, прежний лидер, спустился на второе место со своими 92 спутниками.
 
[Impact]Учёные зафиксировали самую мощную космическую вспышку — она длится уже более трёх лет[/Impact]

Астрономы Саутгемптонского университета (Великобритания) сообщили об обнаружении самой мощной и продолжительной космической вспышки — она в десять раз ярче любой известной сверхновой и в три раза ярче вспышки приливного разрушения, которая возникает при падении звезды в чёрную дыру.
image.webp
Событие получило название AT2021lwx, и к настоящему моменту вспышка длится уже более трёх лет — для сравнения, яркие вспышки сверхновых видно лишь несколько месяцев. Событие произошло на расстоянии 8 млрд световых лет от Земли, то есть Вселенной тогда было 6 млрд лет. Исследователи считают, что взрыв порождён поглощаемым сверхмассивной чёрной дырой облаком газа в несколько тысяч раз больше Солнца. При погружении объекта в чёрную дыру через его остатки и её аккреционный диск проходят ударные волны. Такие события являются очень редкими, и ранее ничего подобного наблюдать не приходилось.

В прошлом году учёные зафиксировали самый яркий взрыв за всю историю наблюдений — гамма-всплеск GRB 221009A. Он был ярче, чем AT2021lwx, но и значительно короче, а значит, при вспышке AT2021lwx высвобождается намного больше энергии.

Впервые взрыв AT2021lwx был зафиксирован калифорнийским центром Zwicky Transient Facility, после чего подтверждён телескопами системы ATLAS (Asteroid Terrestrial-impact Last Alert System) на Гавайях. Истинные масштабы события долгое время оставались неизвестными. Учёных Саутгемптонского университета смутила его продолжительность: вспышки сверхновых и приливных разрушений длятся несколько месяцев, но никак не два года. Астрономы исследовали объект при помощи космической обсерватории Neil Gehrels Swift, New Technology Telescope в Чили, и Большого Канарского телескопа.

Проанализировав спектр излучения, разбив его на разные длины волн и проанализировав различные характеристики излучения и поглощения, учёные смогли оценить расстояние до объекта и его яркость у источника. Он оказался сопоставим с квазарами — яркими вспышками, возникающими при постоянном поглощении сверхмассивными чёрными дырами газа, который падает на них с огромной скоростью. Но яркость квазаров колеблется постоянно, тогда как ещё десятилетие назад признаков AT2021lwx ещё не было — вспышка возникла внезапно, став одной из самых ярких во Вселенной, и это действительно беспрецедентно.

Существует несколько гипотез, объясняющих природу взрыва, но наиболее правдоподобной учёные Саутгемптона считают чрезвычайно большое облако газа, преимущественно водорода, или пыли, которое сошло с орбиты вокруг чёрной дыры и устремилось в неё. Астрономы намереваются получить больше сведений об объекте, изучив его излучение в разных фрагментах спектра, включая рентгеновский диапазон — это поможет выявить поверхность объекта и его температуру, а также понять, какие основные процессы там происходят. А последующее моделирование поможет оценить, насколько жизнеспособны их гипотезы.
 
[Impact]Во времена динозавров у Сатурна могло ещё не быть колец — им всего несколько сотен миллионов лет[/Impact]

Три недавних исследования учёных из Исследовательского центра Эймса агентства NASA были основаны на данных, полученных во время миссии NASA «Кассини». В ходе исследований были получены доказательства того, что кольца Сатурна достаточно молоды, и несмотря на это в скором времени они могут исчезнуть.
Посмотреть вложение 1
В первом исследовании рассматривается масса колец, их «чистота», скорость добавления с них новых частиц и то, как это влияет на изменение колец во времени. Сложив эти элементы вместе, можно получить более полное представление о том, как долго они существуют и сколько времени им осталось. Кольца почти полностью состоят из чистого льда. Несколько процентов их массы составляет неледяное «загрязнение», исходящее от притягиваемых Сатурном микрометеороидов, таких как фрагменты астероидов размером меньше песчинки. Анализ также показывает, что микрометеороиды прибывают в кольца не так быстро, как предполагали учёные. По уровню загрязнения можно сделать вывод, что кольца подвергались постоянной бомбардировке различными космическими песчинками на протяжении не более чем нескольких сотен миллионов лет. Таков и их возраст, хотя самому Сатурну, как и Солнечной системе, уже 4,6 млрд лет. Возможно, во времена динозавров колец у Сатурна ещё не было.

Авторы второго исследования выявили две вещи, которые в значительной степени игнорировались в прочих исследованиях, и подтвердили выводы исследования выше. В частности, они изучали физику, определяющую долгосрочную эволюцию колец, и обнаружили, что двумя важными элементами являются бомбардировка микрометеороидами и то, как обломки от этих столкновений распределяются внутри колец. Приняв во внимание эти факторы, исследователи сделали вывод о том, что кольца могли достичь своей нынешней массы всего за несколько сотен миллионов лет. Результаты также позволяют предположить, что их молодой возраст связан с причиной их появления — момент, когда нестабильные гравитационные силы в системе Сатурна разрушили некоторые из его ледяных лун.

«Идея о том, что культовые кольца Сатурна могут быть относительно недавней особенностью нашей Солнечной системы, была спорной, но наши новые результаты завершают тройку измерений "Кассини", которые делают этот вывод наиболее вероятным» — сказал Джефф Куцци (Jeff Cuzzi), исследователь из Эймса и соавтор одной из последних работ.

Миссия «Кассини» обнаружила, что кольца быстро теряют массу, поскольку материал из самых внутренних областей падает на планету. В третьей работе впервые даётся количественная оценка того, как быстро материал колец дрейфует в этом направлении, и метеороиды в этом играют не последнюю роль. Их столкновения с существующими частицами кольца и то, как образующиеся обломки выбрасываются наружу, создают своего рода конвейер, несущий материал кольца в направлении Сатурна. Рассчитав, что все эти толчки частиц означают для их окончательного исчезновения в планете, исследователи пришли к выводу, что он может потерять свои кольца в ближайшие несколько сотен миллионов лет.

«Я думаю, что эти результаты говорят нам о том, что постоянная бомбардировка всем этим инородным мусором не только загрязняет планетарные кольца, но и со временем должна привести к их разрушению, — сказал Пол Эстрада (Paul Estrada), исследователь из Эймса и соавтор всех трех исследований. — Вполне вероятно, что тонкие и тёмные кольца Урана и Нептуна являются результатом этого процесса».
 
Назад
Сверху