Что нового?
Пикник ТВ

This is a sample guest message. Register a free account today to become a member! Once signed in, you'll be able to participate on this site by adding your own topics and posts, as well as connect with other members through your own private inbox!

ОЧумелые ручки

Спасибо. Теперь много понятно. По поводу заземления, как заземлить? У меня антенна установлена на металлической мачте. Поднять наверх медную проволку из корпуса антенны и затем вниз в землю на глубину от 1.5 до 3м. Или закопав 1 метре глубине например чугунную батарею (массивный элемент),и привязать спуск к этой батареи???
 
:-) Не думаю что Вы будите копать три метра.
RamZis написал(а):
Поднять на верх медную проволку из корпуса антенны и затем вниз в землю на глубину

Метра. Вместо батареи пустое ведро сойдёт. Или же если у Вас центральное отопление или водопровод то можно просто прикрутить к трубе.

ur11.gif
 
Спасибо большое за ответы! Еще как вариант забить 3 штыря на глубину 1м. или 1.5м после чего объеденив их между собой арматурой или полосой. Или же забить один штырь, но глубже. Вы как думаете?
 
RamZis написал(а):
Еще как вариант забить 3 штыря на глубину 1м. или 1.5м после чего объеденив их между собой арматурой или полосой. Или же забить один штырь, но глубже. Вы как думаете?
Лучше три. Как бы получается площадь заземления больше.
 
А кто сталкивался с переделкой и таким конвертором ? Просто по диагонали поставить пластину , размер подбирать?
 
[shadow=blue]Satfinder Цвіркун[/shadow]

Данное устройство является полноценным прибором для настройки спутниковой антенны. Вы спросите, зачем собирать прибор, если можно купить заводской, готовый?

3GS55wMZ.gif


3GS55wN0.gif


Satfinder "Цвіркун" (by Lizard66) имеет множество преимуществ даже перед некоторыми заводскими приборами для настройки антенны! Во первых устройство обходиться дешевле, чем заводской вариант. Во вторых он очень прост в использовании. Так же возможно добавление поддержки DVB-S2 при замене тюнера и доработки прошивки.
Характеристики устройства:
Поддержка конверторов: универсальный (9750/10600), круговой (10750), С-band (5150)
DiSEqC: 1.0 (4 потра) / 1.1 (8 портов), 1.3 (USALS)
Позволяет запомнить данные 31го спутника по две частоты на каждый с установкой
поляризации,битрейта (1000 – 45000 М/s), FEC (включая AUTO), порт по умолчанию.
Прибор позволяет читать служебные таблицы с залоченной частоты. С SDT зачитывается
список каналов, SID (в десятичном и шестнадцатеричном формате) и тип канала (ТВ/радио/данные).
С NIT орбитальная позиция, модуляция, фактор скругления и имя провайдера.
Имеется встроенный электронный компас, который показывает текущий азимут, так же
рассчитывается азимут на искомый спутник и «маркеры» указывают в какую сторону необходимо
повернуть тарелку. Прибор так же рассчитывает и отображает значение угла места на искомый спутник.
Так же имеется возможность изменения показаний уровня шкалы

3GS55wN1.gif


3GS55wN2.gif


3GS55wN3.gif


3GS55wN4.gif


Задавайте вопросы на форуме: Форум--

http://satfinder.esy.es/forum/
так же на форуме можете найти печатку и прочее. (поскольку форум на бесплатном хостинге - могут иногда возникать проблемы при открытии)

3GS55wN5.gif


3GS55wMY.gif


3GS55wMX.gif



P.S.
Вот в процессе настройки(правда прибор был без корпуса):
 
[shadow=blue]Самодельный ветрогенератор[/shadow]

464864864.jpg


Россия в отношении ветроэнергетических ресурсов занимает двоякое положение. С одной стороны, благодаря огромной общей площади и обилию равнинных местностей ветра в целом много, и он большей частью ровный. С другой – наши ветры преимущественно низкопотенциальные, медленные, см. рис. С третьей, в мало обжитых местностях ветры буйные. Исходя из этого, задача завести на хозяйстве ветрогенератор вполне актуальна. Но, чтобы решить – покупать достаточно дорогое устройство, или сделать его своими руками, нужно как следует подумать, какой тип (а их очень много) для какой цели выбрать.

5468648.jpg


Ветроэнергетические ресурсы России

Основные понятия

КИЭВ – коэффициент использования энергии ветра. В случае применения для расчета механистической модели плоского ветра (см. далее) он равен КПД ротора ветросиловой установки (ВСУ).
КПД – сквозной КПД ВСУ, от набегающего ветра до клемм электрогенератора, или до количества накачанной в бак воды.
Минимальная рабочая скорость ветра (МРС) – скорость его, при которой ветряк начинает давать ток в нагрузку.
Максимально допустимая скорость ветра (МДС) – его скорость, при которой выработка энергии прекращается: автоматика или отключает генератор, или ставит ротор во флюгер, или складывает его и прячет, или ротор сам останавливается, или ВСУ просто разрушается.
Стартовая скорость ветра (ССВ) – при такой его скорости ротор способен провернуться без нагрузки, раскрутиться и войти в рабочий режим, после чего можно включать генератор.
Отрицательная стартовая скорость (ОСС) – это значит, что ВСУ (или ВЭУ – ветроэнергетическая установка, или ВЭА, ветроэнергетический агрегат) для запуска при любой скорости ветра требует обязательной раскрутки от постороннего источника энергии.
Стартовый (начальный) момент – способность ротора, принудительно заторможенного в потоке воздуха, создавать вращающий момент на валу.
Ветродвигатель (ВД) – часть ВСУ от ротора до вала генератора или насоса, или другого потребителя энергии.
Роторный ветрогенератор – ВСУ, в которой энергия ветра преобразуется во вращательный момент на валу отбора мощности посредством вращения ротора в потоке воздуха.
Диапазон рабочих скоростей ротора – разность между МДС и МРС при работе на номинальную нагрузку.
Тихоходный ветряк – в нем линейная скорость частей ротора в потоке существенно не превосходит скорость ветра или ниже ее. Динамический напор потока непосредственно преобразуется в тягу лопасти.
Быстроходный ветряк – линейная скорость лопастей существенно (до 20 и более раз) выше скорости ветра, и ротор образует свою собственную циркуляцию воздуха. Цикл преобразования энергии потока в тягу сложный.
Примечания:

Тихоходные ВСУ, как правило, имеют КИЭВ ниже, чем быстроходные, но имеют стартовый момент, достаточный для раскрутки генератора без отключения нагрузки и нулевую ССВ, т.е. абсолютно самозапускающиеся и применимы при самых слабых ветрах.
Тихоходность и быстроходность – понятия относительные. Бытовой ветряк на 300 об/мин может быть тихоходным, а мощные ВСУ типа EuroWind, из которых набирают поля ветроэлектростанций, ВЭС (см. рис.) и роторы которых делают порядка 10 об/мин – быстроходные, т.к. при таком их диаметре линейная скорость лопастей и их аэродинамика на большей части размаха – вполне «самолетные», см. далее.
56884648.jpg


Какой нужен генератор?

Электрический генератор для ветряка бытового назначения должен вырабатывать электроэнергию в широком диапазоне скоростей вращения и обладать способностью самозапуска без автоматики и внешних источников питания. В случае использования ВСУ с ОСС (ветряки с раскруткой), обладающих, как правило, высокими КИЭВ и КПД, он должен быть и обратимым, т.е. уметь работать и как двигатель. При мощностях до 5 кВт этому условию удовлетворяют электрические машины с постоянными магнитами на основе ниобия (супермагнитами); на стальных или ферритовых магнитах можно рассчитывать не более чем на 0,5-0,7 кВт.

Примечание: асинхронные генераторы переменного тока или коллекторные с ненамагниченным статором не годятся совершенно. При уменьшении силы ветра они «погаснут» задолго до того, как его скорость упадет до МРС, и потом сами не запустятся.

Отличное «сердце» ВСУ мощностью от 0,3 до 1-2 кВт получается из автогенератора переменного тока со встроенным выпрямителем; таких сейчас большинство. Во-первых, они держат выходное напряжение 11,6-14,7 В в довольно широком диапазоне скоростей без внешних электронных стабилизаторов. Во-вторых, кремниевые вентили открываются, когда напряжение на обмотке достигнет примерно 1,4 В, а до этого генератор «не видит» нагрузки. Для этого генератор нужно уже довольно прилично раскрутить.

В большинстве случаев автогенератор можно непосредственно, без зубчатой или ременной передачи, соединить с валом быстроходного ВД, подобрав обороты выбором количества лопастей, см. ниже. «Быстроходки» имеют малый или нулевой стартовый момент, но ротор и без отключения нагрузки успеет достаточно раскрутиться, прежде чем вентили откроются и генератор даст ток.

Выбор по ветру

Прежде чем решать, какой сделать ветрогенератор, определимся с местной аэрологией. В серо-зеленоватых (безветренных) областях ветровой карты хоть какой-то толк будет лишь от парусного ветродвигателя (и них далее поговорим). Если необходимо постоянное энергоснабжение, то придется добавить бустер (выпрямитель со стабилизатором напряжения), зарядное устройство, мощную аккумуляторную батарею, инвертор 12/24/36/48 В постоянки в 220/380 В 50 Гц переменного тока. Обойдется такое хозяйство никак не менее $20.000, и снять долговременную мощность более 3-4 кВт вряд ли получится. В общем, при непреклонном стремлении к альтернативной энергетике лучше поискать другой ее источник.

В желто-зеленых, слабоветренных местах, при потребности в электричестве до 2-3 кВт самому можно взяться за тихоходный вертикальный ветрогенератор. Их разработано несть числа, и есть конструкции, по КИЭВ и КПД почти не уступающие «лопастникам» промышленного изготовления.

Если же ВЭУ для дома предполагается купить, то лучше ориентироваться на ветряк с парусным ротором. Споров и них много, и в теории пока еще не все ясно, но работают. В РФ «парусники» выпускают в Таганроге на мощность 1-100 кВт.

В красных, ветреных, регионах выбор зависит от потребной мощности. В диапазоне 0,5-1,5 кВт оправданы самодельные «вертикалки»; 1,5-5 кВт – покупные «парусники». «Вертикалка» тоже может быть покупной, но обойдется дороже ВСУ горизонтальной схемы. И, наконец, если требуется ветряк мощностью 5 кВт и более, то выбирать нужно между горизонтальными покупными «лопастниками» или «парусниками».

Примечание: многие производители, особенно второго эшелона, предлагают комплекты деталей, из которых можно собрать ветрогенератор мощностью до 10 кВт самостоятельно. Обойдется такой набор на 20-50% дешевле готового с установкой. Но прежде покупки нужно внимательно изучить аэрологию предполагаемого места установки, а затем по спецификациям подобрать подходящие тип и модель.

О безопасности

Детали ветродвигателя бытового назначения в работе могут иметь линейную скорость, превосходящую 120 и даже 150 м/с, а кусочек любого твердого материала весом в 20 г, летящий со скоростью 100 м/с, при «удачном» попадании убивает здорового мужика наповал. Стальная, или из жесткого пластика, пластина толщиной 2 мм, движущаяся со скоростью 20 м/с, рассекает его же напополам.

Кроме того, большинство ветряков мощностью более 100 Вт довольно сильно шумят. Многие порождают колебания давления воздуха сверхнизкой (менее 16 Гц) частоты – инфразвуки. Инфразвуки неслышимы, но губительны для здоровья, а распространяются очень далеко.

Примечание: в конце 80-х в США был скандал – пришлось закрыть крупнейшую на тот момент в стране ВЭС. Индейцы из резервации в 200 км от поля ее ВСУ доказали в суде, что резко участившиеся у них после ввода ВЭС в эксплуатацию расстройства здоровья обусловлены ее инфразвуками.

В силу указанных выше причин установка ВСУ допускается на расстоянии не менее 5 их высот от ближайших жилых строений. Во дворах частных домовладений можно устанавливать ветряки промышленного изготовления, соответствующим образом сертифицированные. На крышах ставить ВСУ вообще нельзя – при их работе, даже у маломощных, возникают знакопеременные механические нагрузки, способные вызвать резонанс строительной конструкции и ее разрушение.

Примечание: высотой ВСУ считается наивысшая точка ометаемого диска (для лопастных роторов) или геомерической фигуры (для вертикальных ВСУ с ротором на древке). Если мачта ВСУ или ось ротора выступают вверх еще выше, высота считается по их топу – верхушке.

Ветер, аэродинамика, КИЭВ

Самодельный ветрогенератор подчиняется тем же законам природы, что и заводской, рассчитанный на компьютере. И самодельщику основы его работы нужно понимать очень хорошо – в его распоряжении чаще всего нет дорогих суперсовременных материалов и технологического оборудования. Аэродинамика же ВСУ ох как непроста…

Ветер и КИЭВ
Для расчета серийных заводских ВСУ используется т. наз. плоская механистическая модель ветра. В ее основе следующие предположения:

Скорость и направление ветра постоянны в пределах эффективной поверхности ротора.
Воздух – сплошная среда.
Эффективная поверхность ротора равна ометаемой площади.
Энергия воздушного потока – чисто кинетическая.
При таких условиях максимальную энергию единицы объема воздуха вычисляют по школьной формуле, полагая плотность воздуха при нормальных условиях 1,29 кг*куб. м. При скорости ветра 10 м/с один куб воздуха несет в себе 65 Дж, и с одного квадрата эффективной поверхности ротора можно, при 100% КПД всей ВСУ, снять 650 Вт. Это весьма упрощенный подход – все знают, что ветер идеально ровным не бывает. Но на это приходится идти, чтобы обеспечить повторяемость изделий – обычное в технике дело.

Плоскую модель игнорировать не следует, она дает четкий минимум доступной энергии ветра. Но воздух, во-первых, сжимаем, во-вторых, очень текуч (динамическая вязкость всего 17,2 мкПа*с). Это значит, поток может обтекать ометаемую площадь, уменьшая эффективную поверхность и КИЭВ, что чаще всего и наблюдается. Но в принципе возможна и обратная ситуация: ветер стекается к ротору и площадь эффективной поверхности тогда окажется больше ометаемой, а КИЭВ – больше 1 относительно его же для плоского ветра.

Приведем два примера. Первый – прогулочная, довольно тяжеловесная, яхта может идти не только против ветра, но и быстрее его. Ветер имеется в виду внешний; вымпельный ветер все равно должен быть быстрее, иначе как он судно потянет?

Второй – классика авиационной истории. На испытаниях МИГ-19 оказалось, что перехватчик, который был на тонну тяжелее фронтового истребителя, по скорости разгоняется быстрее. С теми же движками в том же планере.

Теоретики не знали, что и думать, и всерьез засомневались в законе сохранения энергии. В конце концов оказалось – дело в выступающем из воздухозаборника конусе обтекателя РЛС. От его носка к обечайке возникало уплотнение воздуха, как бы сгребавшее его со сторон к компрессорам двигателей. С тех пор ударные волны прочно вошли в теорию как полезные, и фантастические летные данные современных самолетов в немалой степени обусловлены их умелым использованием.

Аэродинамика
Развитие аэродинамики принято делить на две эпохи – до Н. Г. Жуковского и после. Его доклад «О присоединенных вихрях» от 15 ноября 1905 г. стал началом новой эры в авиации.

До Жуковского летали на поставленных плашмя парусах: полагалось, что частицы набегающего потока отдают весь свой импульс передней кромке крыла. Это позволяло сразу избавиться от векторной величины – момента количества движения – порождавшей зубодробительную и чаще всего неаналитическую математику, перейти к куда более удобным скалярным чисто энергетическим соотношениям, и получить в итоге расчетное поле давления на несущую плоскость, более-менее похожее на настоящее.

Такой механистический подход позволил создать аппараты, способные худо-бедно подняться в воздух и совершить перелет из одного места в другое, не обязательно грохнувшись на землю где-то по пути. Но стремление увеличить скорость, грузоподъемность и другие летные качества все больше выявляло несовершенство первоначальной аэродинамической теории.

Идея Жуковского была такова: вдоль верхней и нижней поверхностей крыла воздух проходит разный путь. Из условия непрерывности среды (пузыри вакуума сами по себе в воздухе не образуются) следует, что скорости верхнего и нижнего потоков, сходящих с задней кромки, должны отличаться. Вследствие пусть малой, но конечной вязкости воздуха там из-за разности скоростей должен образоваться вихрь.

Вихрь вращается, а закон сохранения количества движения, столь же непреложный, как и закон сохранения энергии, справедлив и для векторных величин, т.е. должен учитывать и направление движения. Поэтому тут же, на задней кромке, должен сформироваться противоположно вращающийся вихрь с таким же вращательным моментом. За счет чего? За счет энергии, вырабатываемой двигателем.

Для практики авиации это означало революцию: выбрав соответствующий профиль крыла, можно было присоединенный вихрь пустить вокруг крыла в виде циркуляции Г, увеличивающей его подъемную силу. Т.е., затратив часть, а для больших скоростей и нагрузок на крыло – большую часть, мощности мотора, можно создать вокруг аппарата воздушный поток, позволяющий добиться лучших летных качеств.

Это делало авиацию авиацией, а не частью воздухоплавания: теперь летательный аппарат мог сам создавать себе нужную для полета среду и не быть более игрушкой воздушных потоков. Нужен только двигатель помощнее, и еще и еще мощнее…

Снова КИЭВ
Но у ветряка мотора нет. Он, наоборот, должен отбирать энергию у ветра и давать ее потребителям. И здесь выходит – ноги вытащил, хвост увяз. Пустили слишком мало энергии ветра на собственную циркуляцию ротора – она будет слабой, тяга лопастей – малой, а КИЭВ и мощность – низкими. Отдадим на циркуляцию много – ротор при слабом ветре будет на холостом ходу крутиться как бешеный, но потребителям опять достается мало: чуть дали нагрузку, ротор затормозился, ветер сдул циркуляцию, и ротор стал.

Закон сохранения энергии «золотую середину» дает как раз посерединке: 50% энергии даем в нагрузку, а на остальные 50% подкручиваем поток до оптимума. Практика подтверждает предположения: если КПД хорошего тянущего пропеллера составляет 75-80%, то КИЭВ так же тщательно рассчитанного и продутого в аэродинамической трубе лопастного ротора доходит до 38-40%, т.е. до половины от того, чего можно добиться при избытке энергии.

Современность
Ныне аэродинамика, вооруженная современной математикой и компьютерами, все более уходит от неизбежно что-то да упрощающих моделей к точному описанию поведения реального тела в реальном потоке. И тут, кроме генеральной линии – мощность, мощность, и еще раз мощность! – обнаруживаются пути побочные, но многообещающие как раз при ограниченном количестве поступающей в систему энергии.

Известный авиатор-альтернативщик Пол Маккриди еще в 80-х создал самолет, с двумя моторчиками от бензопилы мощностью в 16 л.с. показавший 360 км/ч. Причем шасси его было трехопорным неубирающимся, а колеса – без обтекателей. Ни один из аппаратов Маккриди не вышел на линию и не встал на боевое дежурство, но два – один с поршневыми моторами и пропеллерами, а другой реактивный – впервые в истории облетели вокруг земного шара без посадки на одной заправке.

Парусная яхта на подводных крыльях
Парусная яхта на подводных крыльях

Парусов, породивших изначальное крыло, развитие теории тоже коснулось весьма существенно. «Живая» аэродинамика позволила яхтам при ветре в 8 узл. встать на подводные крылья (см. рис.); чтобы разогнать такую громадину до нужной скорости гребным винтом, требуется двигатель не менее 100 л.с. Гоночные катамараны при таком же ветре ходят со скоростью около 30 узл. (55 км/ч).

Есть и находки совершенно нетривиальные. Любители самого редкого и экстемального спорта – бейсджампинга – надев апециальный костюм-крыло, вингсьют, летают без мотора, маневрируя, на скорости более 200 км/ч (рис. справа), а затем плавно приземляются в заранее выбранном месте. В какой сказке люди летают сами по себе?

Бейсджампер в видгсьюте
Бейсджампер в видгсьюте

Разрешились и многие загадки природы; в частности – полет жука. По классической аэродинамике, он летать не способен. Точно так же, как и родоначальник «стелсов» F-117 с его крылом ромбовидного профиля тоже не способен подняться в воздух. А МИГ-29 и Су-27, которые некоторое время могут лететь хвостом вперед, и вовсе ни в какие представления не укладываются.

И почему тогда, занимаясь ветродвигателями, не забавой и не орудием уничтожения себе подобных, а источником жизненно важного ресурса, нужно плясать непременно от теории слабых потоков с ее моделью плоского ветра? Неужели не найдется возможности продвинуться дальше?

Чего ожидать от классики?

Однако от классики отказываться ни в коем случае не следует. Она дает основу, не оперевшись на которую нельзя подняться выше. Точно так же, как теория множеств не отменяет таблицу умножения, а от квантовой хромодинамики яблоки с деревьев вверх не улетят.

Итак, на что можно рассчитывать при классическом подходе? Посмотрим на рисунок. Слева – типы роторов; они изображены условно. 1 – вертикальный карусельный, 2 – вертикальный ортогональный (ветряная турбина); 2-5 – лопастные роторы с разным количеством лопастей с оптимизированными профилями.
48668448664.jpg


Сравнение эффективности ВСУ разных типов

Справа по горизонтальной оси отложена относительная скорость ротора, т.е., отношение линейной скорости лопасти к скорости ветра. По вертикальной вверх – КИЭВ. А вниз – опять же относительный крутящий момент. Единичным (100%) крутящим моментом считается такой, который создает насильно заторможенный в потоке ротор со 100% КИЭВ, т.е. когда вся энергия потока преобразуется во вращающее усилие.

Такой подход позволяет делать далеко идущие выводы. Скажем, количество лопастей нужно выбирать не только и не столько по желательной скорости вращения: 3- и 4-лопастники сразу много теряют по КИЭВ и вращательному моменту по сравнению с хорошо работающими примерно в том же диапазоне скорстей 2- и 6-лопастниками. А внешне похожие карусель и ортогонал обладают принципиально разными свойствами.

В целом же предпочтение следует отдавать лопастным роторам, кроме случаев, когда требуются предельная дешевизна, простота, необслуживаемый самозапуск без автоматики и невозможен подъем на мачту.

Примечание: о парусных роторах поговорим особо – они, похоже, в классику не укладываются.

Вертикалки

ВСУ с вертикальной осью вращения имеют неоспоримое для быта преимущество: их узлы, требующие обслуживания, сосредоточены внизу и не нужен подъем наверх. Там остается, и то не всегда, упорно-опорный самоустанавливающийся подшипник, но он прочен и долговечен. Поэтому, проектируя простой ветрогенератор, отбор вариантов нужно начинать с вертикалок. Основные их типы представлены на рис.

54684684.jpg

Вертикальные ветрогенераторы

ВС
На первой позиции – самый простейший, чаще всего называемый ротором Савониуса. На самом деле его изобрели в 1924 г. в СССР Я. А. и А. А. Воронины, а финский промышленник Сигурд Савониус бессовестно присвоил себе изобретение, проигнорировав советское авторское свидетельство, и начал серийный выпуск. Но внедрение в судьбе изобретения значит очень много, поэтому мы, чтобы не ворошить прошлое и не тревожить прах усопших, назовем этот ветряк ротором Ворониных-Савониуса, или для краткости, ВС.

ВС для самодельщика всем хорош, кроме «паровозного» КИЭВ в 10-18%. Однако в СССР над ним работали много, и наработки есть. Ниже мы рассмотрим усовершенствованную конструкцию, не намного более сложную, но по КИЭВ дающую фору лопастникам.

Примечание: двухлопастный ВС не крутится, а дергается рывками; 4-лопастный лишь немного плавнее, но много теряет в КИЭВ. Для улучшения 4-«корытные» чаще всего разносят на два этажа – пара лопастей внизу, а другая пара, повернутая на 90 градусов по горизонтали, над ними. КИЭВ сохраняется, и боковые нагрузки на механику слабеют, но изгибные несколько возрастают, и при ветре более 25 м/с у такой ВСУ на древке, т.е. без растянутого вантами подшипника над ротором, «срывает башню».

Дарье
Следующий – ротор Дарье; КИЭВ – до 20%. Он еще проще: лопасти – из простой упругой ленты безо всякого профиля. Теория ротора Дарье еще недостаточно разработана. Ясно только, что начинает он раскручиваться за счет разности аэродинамического сопротивления горба и кармана ленты, а затем становится вроде как быстроходным, образуя собственную циркуляцию.

Вращательный момент мал, а в стартовых положениях ротора параллельно и перпендикулярно ветру вообще отсутствует, поэтому самораскрутка возможна только при нечетном количестве лопастей (крыльев?) В любом случае на время раскрутки нагрузку от генератора нужно отключать.

Есть у ротора Дарье еще два нехороших качества. Во-первых, при вращении вектор тяги лопасти описывает полный оборот относительно ее аэродинамического фокуса, и не плавно, а рывками. Поэтому ротор Дарье быстро разбивает свою механику даже при ровном ветре.

Во-вторых, Дарье не то что шумит, а вопит и визжит, вплоть до того, что лента рвется. Происходит это вследствие ее вибрации. И чем больше лопастей, тем сильнее рев. Так что Дарье если и делают, то двухлопастными, из дорогих высокопрочных звукопоглощающих материалов (карбона, майлара), а для раскрутки посередине мачты-древка приспосабливают небольшой ВС.

Ортогонал
На поз. 3 – ортогональный вертикальный ротор с профилированными лопастями. Ортогональный потому, что крылья торчат вертикально. Переход от ВС к ортогоналу иллюстрирует рис. слева.

546468468.jpg


Карусельный и ортогональный роторы

Угол установки лопастей относительно касательной к окружности, касающейся аэродинамических фокусов крыльев, может быть как положительным (на рис.), так и отрицательным, сообразно силе ветра. Иногда лопасти делают поворотными и ставят на них флюгерки, автоматически держащие «альфу», но такие конструкции часто ломаются.

Центральное тело (голубое на рис.) позволяет довести КИЭВ почти до 50% В трехлопастном ортогонале оно должно в разрезе иметь форму треугольника со слегка выпуклыми сторонами и скругленными углами, а при большем количестве лопастей достаточно простого цилиндра. Но теория для ортогонала оптимальное количество лопастей дает однозначно: их должно быть ровно 3.

Ортогонал относится к быстроходным ветрякам с ОСС, т.е. обязательно требует раскрутки при вводе в эксплуатацию и после штиля. По ортогональной схеме выпускаются серийные необслуживаемые ВСУ мощностью до 20 кВт.

Геликоид
Геликоидный ротор, или ротор Горлова (поз. 4) – разновидность ортогонала, обеспечивающая равномерное вращение; ортогонал с прямыми крыльями «рвет» лишь немного слабее двухлопастного ВС. Изгиб лопастей по геликоиде позволяет избежать потерь КИЭВ из-за их кривизны. Хотя часть потока кривая лопасть и отбрасывает, не используя, но зато и загребает часть в зону наибольшей линейной скорости, компенсируя потери. Геликоиды используют реже прочих ветряков, т.к. они вследствие сложности изготовления оказываются дороже равных по качеству собратьев.

Бочка-загребушка
На 5 поз. – ротор типа ВС, окруженный направляющим аппаратом; его схема представлена на рис. справа. В промышленном исполнении встречается редко, т.к. дорогостоящий отвод земли не компенсирует прироста мощности, а материалоемкость и сложность производства велики. Но самодельщик, боящийся работы – уже не мастер, а потребитель, и, если нужно не более 0,5-1,5 кВт, то для него «бочка-загребушка» лакомый кусок:

468468846.jpg


Ротор такого типа абсолютно безопасен, бесшумен, не создает вибраций и может быть установлен где угодно, хоть на детской площадке.
Согнуть «корыта» из оцинковки и сварить каркас из труб – работа ерундовая.
Вращение – абсолютно равномерное, детали механики можно взять самые дешевые или из хлама.
Не боится ураганов – слишком сильный ветер не может протолкнуться в «бочку»; вокруг нее возникает обтекаемый вихревой кокон (мы с этим эффектом еще столкнемся).
А самое главное – поскольку поверхность «загребушки» в несколько раз больше таковой ротора внутри, КИЭВ может быть и сверхединичным, а вращательным момент уже при 3 м/с у «бочки» трехметрового диаметра такой, что генератору на 1 кВт с предельной нагрузкой, как говорится, лучше и не дергаться.
Видео: ветрогенератор Ленца

https://www.youtube.com/watch?v=dnTEsUMAocs

ВСУ Бирюкова

В 60-х в СССР Е. С. Бирюков запатентовал карусельную ВСУ с КИЭВ 46%. Немного позже В. Блинов добился от конструкции на том же принципе КИЭВ 58%, но данных о ее испытаниях нет. А натурные испытания ВСУ Бирюкова были проведены сотрудниками журнала «Изобретатель и рационализатор». Двухэтажный ротор диаметром 0,75 м и высотой 2 м при свежем ветре раскручивал на полную мощность асинхронный генератор 1,2 кВт и выдерживал без поломки 30 м/с. Чертежи ВСУ Бирюкова приведены на рис.

546846846868.jpg


Позиции:

ротор из кровельной оцинковки;
самоустанавливающийся двухрядный шариковый подшипник;
ванты – 5 мм стальной трос;
ось-древко – стальная труба с толщиной стенок 1,5-2,5 мм;
рычаги аэродинамического регулятора оборотов;
лопасти регулятора оборотов – 3-4 мм фанера или листовой пластик;
тяги регулятора оборотов;
груз регулятора оборотов, его вес определяет частоту вращения;
ведущий шкив – велосипедное колесо без шины с камерой;
подпятник – упорно-опорный подшипник;
ведомый шкив – штатный шкив генератора;
генератор.
Бирюков на свою ВСУ получил сразу несколько авторских свидетельств. Во-первых, обратите внимание на разрез ротора. При разгоне он работает подобно ВС, создавая большой стартовый момент. По мере раскрутки во внешних карманах лопастей создается вихревая подушка. С точки зрения ветра, лопасти становятся профилированными, и ротор превращается в быстроходный ортогонал, причем виртуальный профиль меняется соответственно силе ветра.

Во-вторых, профилированный канал между лопастями в рабочем диапазоне скоростей работает как центральное тело. Если же ветер усиливается, то в нем также создается вихревая подушка, выходящая за пределы ротора. Возникает такой же вихревой кокон, как вокруг ВСУ с направляющим аппаратом. Энергия на его создание берется от ветра, и тому на поломку ветряка ее уже не хватает.

В-третьих, регулятор оборотов предназначен прежде всего для турбины. Он держит ее обороты оптимальными с точки зрения КИЭВ. А оптимум частоты вращения генератора обеспечивается выбором передаточного отношения механики.

Примечание: после публикаций в ИР за 1965 г. ВСУ Бирюкова канула в небытие. Ответа от инстанций автор так и не дождался. Судьба многих советских изобретений. Говорят, какой-то японец стал миллиардером, регулярно читая советские популярно-технические журналы и патентуя у себя все, заслуживающее внимания.

Лопастники

Как у сказано, по классике горизонтальный ветрогенератор с лопастным ротором – наилучший. Но, во-первых, ему нужен стабильный хотя бы средней силы ветер. Во-вторых, конструкция для самодельщика таит в себе немало подводных камней, из-за чего нередко плод долгих упорных трудов в лучшем случае освещает туалет, прихожую или крыльцо, а то и оказывается способен только раскрутить самого себя.

546846848468.jpg


По схемам на рис. рассмотрим подробнее; позиции:

Фиг. А:
лопасти ротора;
генератор;
станина генератора;
защитный флюгер (ураганная лопата);
токосъемник;
шасси;
поворотный узел;
рабочий флюгер;
мачта;
хомут под ванты.
Фиг. Б, вид сверху:
защитный флюгер;
рабочий флюгер;
регулятор натяжения пружины защитного флюгера.
Фиг. Г, токосъемник:
коллектор с медными неразрезными кольцевыми шинами;
подпружиненные меднографитовые щетки.
Примечание: ураганная защита для горизонтального лопастника диаметром более 1 м совершенно необходима, т.к. создать вокруг себя вихревой кокон он не способен. При меньших размерах можно добиться выносливости ротора до 30 м/с с лопастями из пропилена.

Итак, где нас ждут «спотыки»?

Лопасти
Профилировка и крутка лопасти ВСУ
Профилировка и крутка лопасти ВСУ

Рассчитывать добиться мощности на валу генератора более 150-200 Вт на лопастях любого размаха, вырезанных из толстостенной пластиковой трубы, как часто советуют – надежды беспросветного дилетанта. Лопасть из трубы (если только она не настолько толстая, что используется просто как заготовка) будет иметь сегментный профиль, т.е. его верхняя, или обе поверхности будут дугами окружности.

Сегментные профили пригодны для несжимаемой среды, скажем, для подводных крыльев или лопастей гребного винта. Для газов же нужна лопасть переменного профиля и шага, для примера см. рис.; размах – 2 м. Это будет сложное и трудоемкое изделие, требующее кропотливого расчета во всеоружии теории, продувок в трубе и натурных испытаний.

5468486684.jpg


Генератор
При насадке ротора прямо на его вал штатный подшипник скоро разобьется – одинаковой нагрузки на все лопасти в ветряках не бывает. Нужен промежуточный вал со специальным опорным подшипником и механическая передача от него на генератор. Для больших ветряков опорный подшипник берут самоустанавливающийся двухрядный; в лучших моделях – трехъярусный, Фиг. Д на рис. выше. Такой позволяет валу ротора не только слегка изгибаться, но и немного смещаться из стороны в сторону или вверх-вниз.

Примечание: на разработку опорного подшипника для ВСУ типа EuroWind ушло около 30 лет.

Аварийный флюгер
Принцип его работы показывает Фиг. В. Ветер, усиливаясь, давит на лопату, пружина растягивается, ротор перекашивается, обороты его падают и в конце концов он становится параллельно потоку. Вроде бы все хорошо, но – гладко было на бумаге…

Попробуйте в ветреный день удержать за ручку параллельно ветру крышку от выварки или большой кастрюли. Только осторожно – вертлявая железяка может садануть по физиономbии так, что расквасит нос, рассечет губу, а то и выбьет глаз.

Плоский ветер бывает только в теоретических выкладках и, с достаточной для практики точностью, в аэродинамических трубах. Реально же ураган ветряки с ураганной лопатой корежит больше, чем вовсе беззащитные. Лучше все-таки менять исковерканные лопасти, чем делать заново все. В промышленных установках – другое дело. Там шаг лопастей, по каждой в отдельности, отслеживает и регулирует автоматика под управлением бортового компьютера. И делаются они из сверхпрочных композитов, а не из водопроводных труб.

Токосъемник
Это – регулярно обслуживаемый узел. Любой энергетик знает, что коллектор со щетками нужно чистить, смазывать, регулировать. А мачта – из водопроводной трубы. Не залезешь, раз в месяц-два придется весь ветряк валить на землю и потом опять поднимать. Сколько он протянет от такой «профилактики»?

Видео: лопастной ветрогенератор + солнечная панель для электроснабжения дачи

https://www.youtube.com/watch?v=wYoQD3l-CXg

Мини и микро

Но с уменьшением размеров лопастника трудности падают по квадрату диаметра колеса. Изготовление горизонтальной лопастной ВСУ своими силами на мощность до 100 Вт уже возможно. Оптимальным будет 6-лопастный. При большем количестве лопастей диаметр ротора, рассчитанного на ту же мощность, будет меньше, но их окажется трудно прочно закрепить на ступице. Роторы о менее чем 6 лопастях можно не иметь в виду: 2-лопастнику на 100 Вт нужен ротор диаметром 6,34 м, а 4-лопастнику той же мощности – 4,5 м. Для 6-лопастного зависимость мощность – диаметр выражается следующим образом:

10 Вт – 1,16 м.
20 Вт – 1,64 м.
30 Вт – 2 м.
40 Вт – 2,32 м.
50 Вт – 2,6 м.
60 Вт – 2,84 м.
70 Вт – 3,08 м.
80 Вт – 3,28 м.
90 Вт – 3,48 м.
100 Вт – 3,68 м.
300 Вт – 6,34 м.
Оптимальным будет рассчитывать на мощность 10-20 Вт. Во-первых, лопасть из пластика размахом более 0,8 м без дополнительных мер защиты не выдержит ветер более 20 м/с. Во-вторых, при размахе лопасти до тех же 0,8 м линейная скорость ее концов не превысит скорость ветра более чем втрое, и требования к профилировке с круткой снижаются на порядки; здесь уже вполне удовлетворительно будет работать «корытце» с сегментным профилем из трубы, поз. Б на рис. А 10-20 Вт обеспечат питание планшетки, подзарядку смартфона или засветят лампочку-экономку.

468684868.jpg


Мини- и микроветрогенераторы

Далее, выбираем генератор. Отлично подойдет китайский моторчик – ступица колеса для электровелосипедов, поз. 1 на рис. Его мощность как мотора – 200-300 Вт, но в режиме генератора он даст примерно до 100 Вт. Но подойдет ли он нам по оборотам?

Показатель быстроходности z для 6 лопастей равен 3. Формула для расчета скорости вращения под нагрузкой – N = v/l*z*60, где N – частота вращения, 1/мин, v – скорость ветра, а l – длина окружности ротора. При размахе лопасти 0,8 м и ветре 5 м/с получаем 72 об/мин; при 20 м/с – 288 об/мин. Примерно с такой же скоростью вращается и велосипедное колесо, так что свои 10-20 Вт от генератора, способного дать 100, мы уж снимем. Можно ротор сажать прямо на его вал.

Но тут возникает следующая проблема: мы, потратив немало труда и денег, хотя бы на моторчик, получили… игрушку! Что такое 10-20, ну, 50 Вт? А лопастный ветряк, способный запитать хотя бы телевизор, дома не сделаешь. Нельзя ли купить готовый мини-ветрогенератор, и не обойдется ли он дешевле? Еще как можно, и еще как дешевле, см. поз. 4 и 5. Кроме того, он будет еще и мобильным. Поставил на пенек – и пользуйся.

Второй вариант – если где-то валяется шаговый двигатель от старого 5- или 8-дюймового дисковода, или от привода бумаги или каретки негодного струйного или матричного принтера. Он может работать как генератор, и приделать к нему карусельный ротор из консервных банок (поз. 6) проще, чем собирать конструкцию наподобие показанной на поз. 3.

В целом по «лопастникам» вывод однозначен: самодельные – скорее для того, чтобы помастерить всласть, но не для реальной долговременной энергоотдачи.

Видео: простейший ветрогенератор для освещения дачи

https://www.youtube.com/watch?v=wYezrFLW7ac

Парусники

Парусные ветрогенераторы
Парусные ветрогенераторы

Парусный ветрогенератор известен давно, но мягкие полотнища его лопастей (см. рис.) начали делать с появлением высокопрочных износостойких синтетических тканей и пленок. Многолопастные ветряки с жесткими парусами широко разошлись по миру как привод маломощных автоматических водокачек, но их техданные ниже даже чем у каруселей.

46488646.jpg


Однако мягкий парус как крыло ветряка, похоже, оказался не так-то прост. Дело не в ветроустойчивости (производители не ограничивают максимально допустимую скорость ветра): яхсменам-парусникам и так известно, что ветру разорвать полотнище бермудского паруса практически невозможно. Скорее шкот вырвет, или мачту сломает, или вся посудина сделает «поворот оверкиль». Дело в энергетике.

К сожалению, точных данных испытаний не удается найти. По отзывам пользователей удалось составить «синтетические» зависимости для установки ВЭУ-4.380/220.50 таганрогского производства с диаметром ветроколеса 5 м, массой ветроголовки 160 кг и частотой вращения до 40 1/мин; они представлены на рис

546846868.jpg


Характеристики ВЭУ-4.380/220.50

Разумеется, ручательств за 100% достоверность быть не может, но и так видно, что плоско-механистической моделью тут и не пахнет. Никак не может 5-метровое колесо на плоском ветре в 3 м/с дать около 1 кВт, при 7 м/с выйти на плато по мощности и далее держать ее до жестокого шторма. Производители, кстати, заявляют, что номинальные 4 кВт можно получить и при 3 м/с, но при установке их силами по результатам исследований местной аэрологии.

Количественной теории также не обнаруживается; пояснения разработчиков маловразумительны. Однако, поскольку таганрогские ВЭУ народ покупает, и они работают, остается предположить, что заявленные коническая циркуляция и пропульсивный эффект – не фикция. Во всяком случае, возможны.

Тогда, выходит, ПЕРЕД ротором, по закону сохранения импульса, должен возникнуть тоже конический вихрь, но расширяющийся и медленный. И такая воронка будет сгонять ветер к ротору, его эффективная поверхность получится больше ометаемой, а КИЭВ – сверхединичным.

Пролить свет на этот вопрос могли бы натурные измерения поля давления перед ротором, хотя бы бытовым анероидом. Если оно окажется выше, чем с боков в стороне, то, действительно, парусные ВСУ работают, как жук летает.

Самодельный генератор

Из сказанного выше ясно, что самодельщикам лучше браться или за вертикалки, или за парусники. Но те и другие очень медленные, а передача на быстроходный генератор – лишняя работа, лишние затраты и потери. Можно ли сделать эффективный тихоходный электрогенератор самому?

Да, можно, на магнитах из ниобиевого сплава, т. наз. супермагнитах. Процесс изготовления основных деталей показан на рис. Катушки – каждая из 55 витков медного 1 мм провода в термостойкой высокопрочной эмалевой изоляции, ПЭММ, ПЭТВ и т.п. Высота обмоток – 9 мм.
5468468648.jpg


Детали самодельного генератора на супермагнитах

Обратите внимание на пазы под шпонки в половинах ротора. Они должны быть расположены так, чтобы магниты (они приклеиваются к магнитопроводу эпоксидкой или акрилом) после сборки сошлись разноименными полюсами. «Блины» (магнитопроводы) должны быть изготовлены из магнитомягкого ферромагнетика; подойдет обычная конструкционная сталь. Толщина «блинов» — не менее 6 мм.

Вообще-то лучше купить магниты с осевым отверстием и притянуть их винтами; супермагниты притягиваются со страшной силой. По этой же причине на вал между «блинами» надевается цилиндрическая проставка высотой 12 мм.

Обмотки, составляющие секции статора, соединяются по схемам, также приведенным на рис. Спаянные концы не должны быть натянуты, но должны образовывать петли, иначе эпоксидка, которой будет залит статор, застывая, может порвать провода.

Заливают статор в изложнице до толщины 10 мм. Центрировать и балансировать не нужно, статор не вращается. Зазор между ротором и статором – по 1 мм с каждой стороны. Статор в корпусе генератора нужно надежно зафиксировать не только от смещения по оси, но и от проворачивания; сильное магнитное поле при токе в нагрузке будет тянуть его за собой.

Видео: генератор для ветряка своими руками

https://www.youtube.com/watch?v=LVysO5LMZko

Вывод

И что же мы имеем напоследок? Интерес к «лопастникам» объясняется скорее их эффектным внешним видом, чем действительными эксплуатационными качествами в самодельном исполнении и на малых мощностях. Самодельная карусельная ВСУ даст «дежурную» мощность для зарядки автоаккумулятора или энергоснабжения небольшого дома.

А вот с парусными ВСУ стоит поэкспериментировать мастерам с творческой жилкой, особенно в мини-исполнении, с колесом 1-2 м диаметром. Если предположения разработчиков верны, то с такого можно будет снять, посредством описанного выше китайского движка-генератора, все его 200-300 Вт.

Сделать же каркас (рангоут) для парусного ротора несложно. Кроме того, парусные ВСУ безопасны, а звуков от них, инфра- и слышимых, не обнаруживается. И высоко понимать ротор не нужно, достаточно одного диаметра колеса.

Видео: технология производства ветрогенераторов

https://www.youtube.com/watch?v=y7D_OUQAr9c
 
[shadow=blue]Как повысить напряжение в электросети[/shadow]

Untitled-11-300x300.jpg


Низкое напряжение в сети – можно сказать, болезнь удаленных потребителей. Стиралка еле крутится, в квартире или в доме; совершенно исправный насос вдруг перестал качать воду на даче – причина чаще всего одна: падение напряжения сети электропитания. При допустимых пределах 195 – 235 В (если линейное напряжение, как и нас и в Европе, 220 В) на «кончиках» распределительной сети может быть 180 и даже 175 В.

Прежде всего, нужно разобраться, где происходит падение напряжения. Тут не нужно измерений и приборов – достаточно поспрашивать соседей. Если у них все в порядке, потери напряжения – в Вашей абонентской проводке и нужно звать мастера-электрика.

Повышение напряжения в сети электропитания

Если же низкое напряжение у всех в округе – нужно думать, как повысить напряжение в сети у себя. Но не пугайтесь сразу же больших затрат на чудеса современной электроники. Они нужны, о них речь пойдет ниже. Но чаще всего проблему можно решить быстро и без хлопот подручными средствами. Причем – технически грамотно и совершенно безопасно.

При стабильно низком напряжении в сети выручит самый обыкновенный понижающий трансформатор на 12 – 36 В. Да, да, именно понижающий. И большой его мощности не потребуется. 100-ваттный потянет нагрузку в 500 Вт, а киловаттный – в 5 кВт. И увеличить напряжение в сети можно до допустимых пределов.

Никаких чудес, никакой паранауки – достаточно такой трансформатор использовать как повышающий автотрансформатор, добавив напряжение понижающей обмотки к линейному. Тогда при 175 В в розетке на выходе будет при 12 В добавочных 187 В. Маловато, но бытовая техника работать будет. Если вдруг напряжение повысится до нормы, автотрансформатор выдаст 232 В; это еще в норме. При 36 В добавочных 175 В вытягиваем до 211 В – норма! Но вдруг и в розетке норма окажется, получим 256 В, а это уже нехорошо для электроприборов. Поэтому лучше всего – 24 В добавочных.

А как же мощность? Дело в том, что в сетевой обмотке автотрансформатора течет РАЗНОСТНЫЙ ток, и если повышать напряжение на небольшую долю от исходного, он окажется совсем незначительным. Правда, в дополнительной обмотке пойдет суммарный ток, но она в понижающих трансформаторах выполняется из толстого провода и при мощности исходного трансформатора в 100 Вт выдержит ток в 3-5 А, а это более 500 Вт при 220 В.

Нужно только правильно сфазировать обмотки. Для этого включаем трансформатор, как показано на схеме, БЕЗ НАГРУЗКИ. К гнездам «Прибор» подключаем любой вольтметр переменного тока на 300 В и более, хотя бы тестер. Показывает меньше, чем в розетке? Меняем местами концы любой из обмоток. Стало больше, чем в розетке? Все, можно пользоваться. Потребителей включаем вместо измерительного прибора.

shema.jpg


Нужно только поставить в цепь сети предохранитель – вдруг в розетке «зашкалит» (это может случиться, если на старой и плохо обслуживаемой подстанции испортится зануление), так пусть он сгорит, а не техника.

Подходящий трансформатор можно найти на «железном» или радиорынке, а то и у себя в кладовке. Не спутайте только с гасящим устройством для низковольтных электропаяльников – они выполнены на конденсаторах, и от них толку не будет, а будет авария.

Защита от перепадов напряжения

В городских условиях напряжение в сети, как правило, держится, но актуальной становится защита квартиры от перепадов напряжения. Вот тут пора вспомнить о чудесах электроники, поскольку «железно – проволочная» электротехника эффективных, простых и дешевых способов их сглаживания не знает.

Поспрашивайте в электро- и радиомагазинах автомат защиты от перепадов напряжения; их еще называют «барьер защитный». Как примерно такой выглядит, видно на иллюстрации. Современные устройства такого типа сравнительно недороги, компактны, их легко подключить и обслуживания в процессе эксплуатации они не требуют.
barier.jpg


Untitled-121.jpg

В частном домовладении достаточно обеспеченного владельца радикальное средство стабилизации напряжения в домовой сети – электронный преобразователь напряжения с собственным накопителем энергии. По принципу действия это тот же компьютерный «бесперебойник» (UPS), но на мощность 3-10 кВт.

Стоят такие устройства весьма и весьма недешево (3-20 тыс. долл. США), но обеспечивают идеальное качество напряжения в сети и электропитание потребителей при ее пропадании. В отличие от компьютерных UPS, они, как правило, имеют интерфейс связи со снабженным собственной электроникой аварийным дизель-генератором, так что «движок» запускается не сразу при пропадании сети, а спустя некоторое время, или когда аккумулятор бесперебойника начинает садиться.

В заключение – важный момент. Человек, поверхностно знакомый с электротехникой, может «сообразить»: ага, компьютерный киловаттный UPS, стало быть, сможет держать утюг почаса-час, а телевизор или люстру – чуть ли не сутки, а стоит несколько сотен долларов. Поставлю-ка я такой на даче!

Неверно. Компьютерные UPS рассчитаны на кратковременное эпизодическое использование, потому и стоят в десятки раз дешевле ИБП общего назначения. При непрерывном использовании достаточно дорогостоящий прибор очень быстро окончательно выйдет из строя.

https://www.youtube.com/watch?v=kamoiMMIU68
 
[shadow=blue]ПЕРЕДЕЛКА HUAWEI E5832 ПОД ВНЕШНИЕ 3G WIFI АНТЕННЫ[/shadow]

Посмотреть вложение 4

Huawei E5832 - мобильный 3G UMTS HSPA WiFi роутер: переделка под внешние 3G WiFi антенны

Посмотреть вложение 3

Huawei E5832 - мобильный 3G UMTS HSPA WiFi роутер: переделка под внешние 3G WiFi антенны

Всем хорош этот роутер: и скорости запредельные и размеры маленькие.

Также радует достаточно информативный дисплей и,самое главное, большое время автономной работа.

Однако, всё это только в условиях достаточно сильного сигнала и в условиях хорошего покрытия 3G оператора, что бывает достаточно редко.

В условиях слабого сигнала скорость падает в "разы", да и покрытие WiFi сигнала этого девайса оставляло желать лучшего: 5 метров-не более.

Ещё одна негативная сторона работы в плохих условиях - сильный нагрев роутера, обусловленный переходом его на большую мощность, и, как следствие, быстрый разряд батареи.

Посмотреть вложение 2

Huawei E5832 - мобильный 3G UMTS HSPA WiFi роутер: переделка под внешние 3G WiFi антенны

Бало принято решение переделать роутер под ДВЕ внешние антенны: 3G и WiFi.

Благо, опыт в такой переделке у нас имеется

Посмотреть вложение 1

Huawei E5832 - мобильный 3G UMTS HSPA WiFi роутер: переделка под внешние 3G WiFi антенны

Внимательно осмотрев роутер, мы его смело разбираем



Huawei E5832 - мобильный 3G UMTS HSPA WiFi роутер: переделка под внешние 3G WiFi антенны

huaweiE5832-5.jpg


Huawei E5832 - мобильный 3G UMTS HSPA WiFi роутер: переделка под внешние 3G WiFi антенны

Внутри устройства нет ничего необычного, по сравнению с предыдущей переделкой.

Есть только экран, который мы предусмотрительно заклеим плотной бумажной лентой, чтобы не повредить в процессе работы.
huaweiE5832-6.jpg


Huawei E5832 - мобильный 3G UMTS HSPA WiFi роутер: переделка под внешние 3G WiFi антенны

Вот она, встроенная "суперэффективная" 3G антенна роутера

huaweiE5832-7.jpg


Huawei E5832 - мобильный 3G UMTS HSPA WiFi роутер: переделка под внешние 3G WiFi антенны

А это (жёлтенькая "пимпочка") "навороченная" внутренняя WiFi антенна роутера (5 метров дальности)

huaweiE5832-8.jpg


Huawei E5832 - мобильный 3G UMTS HSPA WiFi роутер: переделка под внешние 3G WiFi антенны

Разъём технический на 3G сигнал тот же - MS-156 (мама), который нами очень подробно описывался
huaweiE5832-9.jpg


huaweiE5832-10.jpg

Желтая квадратная площадка на плате - это антенный WiFi выход роутера

huaweiE5832-11.jpg

Начинаем переделку роутера.

huaweiE5832-12.jpg


huaweiE5832-13.jpg


Используем уже хорошо знакомый нам разъём-гнездо R-SMA (мама)

huaweiE5832-14.jpg


Аккуратно сверлим отверстия в корпусе роутера

huaweiE5832-15.jpg


huaweiE5832-16.jpg


Аккуратно производим пайку гнезда

huaweiE5832-17.jpg


Убираем за ненадобностью техническое 3G гнездо

huaweiE5832-18.jpg


Припаиваем провод к СВЧ разъёму и к антенному 3G выходу

huaweiE5832-19.jpg


huaweiE5832-20.jpg


Готовим отверстие в плате роутера под WiFi антенное гнездо

huaweiE5832-21.jpg


Аккуратно вставляем

huaweiE5832-22.jpg


и припаиваем

huaweiE5832-23.jpg


Только так и не иначе (минимальные потери)

huaweiE5832-24.jpg


huaweiE5832-25.jpg


Роутер с установленными 3G и WiFi антенными выходами

huaweiE5832-26.jpg


Теперь можно открывать дисплей

huaweiE5832-27.jpg


huaweiE5832-28.jpg


huaweiE5832-29.jpg


Аккуратно делаем отверстия в корпусе роутера под гнёзда

huaweiE5832-30.jpg


huaweiE5832-31.jpg


huaweiE5832-32.jpg


huaweiE5832-33.jpg

Роутер готов к работе

huaweiE5832-34.jpg

huaweiE5832-35.jpg


huaweiE5832-36.jpg


Устройство готово к работе

huaweiE5832-37.jpg


huaweiE5832-38.jpg
 
[shadow=blue]Антенный усилитель 50…1000 МГц[/shadow]

Антенный усилитель 50…1000 МГц
Однокаскадный широкополосный антенный усилитель с регулируемым коэффициентом усиления (до 15 дБ) предназначен для усиления ТВ сигнала в частотном диапазоне 50…1000 МГц (со 2 по 65 ТВ канал). Он также не нуждается в балансировке и настройке. Усилитель имеет один регулируемый каскад усиления, выполненный на малошумящем транзисторе Т1 (BFR91A или КТ3198Г) с включением по схеме с общим эмиттером и цепью коррекции (С1, R3, C2). Регулировка усиления осуществляется подстроечным резистором Р. При необходимости можно включать последовательно два усилителя. В усилителе предусмотрена возможность крепления коаксиального кабеля металлическими зажимами.

Технические характеристики усилителя:
Коэффициент усиления: 15 дБ.
Напряжение питания: 6…18 В.
Входной/выходной импеданс: 75 Ом.
Размеры печатной платы: 26х52 мм.

Посмотреть вложение 1

Рис. 1. Общий вид антенного усилителя 50…1000 МГц



Рис. 2. Cхема электрическая принципиальная

Таблица 2. Перечень радиодеталей для сборки антенного усилителя
1260870124_1_1.jpg

1260870091_3.jpg


Рис. 3. Вид печатной платы сверху

1260870123_4.jpg


Рис. 4. Вид печатной платы со стороны проводников
 
[shadow=blue]Антенный усилитель 30…850 МГц[/shadow]

Антенный усилитель 30…850 МГц
Телевизор есть в каждом доме. Но не всегда удается принимать любимую телепередачу с хорошим качеством изображения: или телецентр расположен достаточно далеко, или его передатчик излучает в эфир не очень мощный сигнал, или условия не позволяют ориентировать приемную ТВ антенну на телецентр. Для улучшения приема ТВ сигнала поможет антенный усилитель. Обычно он располагается на крыше около приемной антенны, но не у всех есть возможность размещения полезного устройства на крыше или чердаке, поэтому усилитель обычно располагается в комнате, недалеко от телевизора. В статье приводятся описания двух проверенных схем антенных усилителей. Оба устройства усиливают весь передаваемый телевизионный спектр сигнала: метровые и дециметровые волны. Как правило, дополнительное усиление требуется для новых дециметровых каналов, вещающих на "умеренной” мощности.
Широкополосный антенный усилитель предназначен для усиления телевизионных сигналов, как в метровом, так и в дециметровом диапазоне. Он не нуждается в балансировке и настройке. Усилитель имеет два одинаковых каскада усиления (10 дБ), выполненных на малошумящих транзисторах Т1 и Т2 (S790T) с их включением по схеме с общим эмиттером и цепями коррекции амплитудно-частотной характеристики в полосе принимаемых частот (R1,C3) и (R5,C5). Хотя транзистор и импортный, его очень легко найти в продаже на радио рынках и в магазинах радиодеталей.

Технические характеристики усилителя
Коэффициент усиления: 20 дБ.
Напряжение питания: 9…12 В.
Входной/выходной импеданс: 75 Ом.
Размеры печатной платы: 55х55 мм.
1260869332_1.jpg


Рис. 1. Общий вид антенного усилителя 30…850 МГц

Таблица 1. Перечень радиодеталей для сборки усилителя:
1260869300_1_1.jpg




Рис. 2. Cхема электрическая принципиальная

1260869367_3.jpg


Рис. 3. Вид печатной платы сверху

1260869341_4.jpg

Рис. 4. Вид печатной платы снизу
 
[shadow=blue]Подключение джойстика от приставки Денди/Dendy к компьютеру[/shadow]

Сейчас я Вам скажу довольно неожиданную вещь. ИГРАТЬ НА КЛАВИАТУРЕ В ИГРЫ НЕ УДОБНО. Она просто не приспособлена для этого, Представьте себе автомобиль, у которого вместо руля пишущая машинка :). Клавиатура громоздка, далеко от компьютера ее не утащишь. А Вы пробовали играть вдвоем на одной клавиатуре? В Mortal Combat, например, где клавиши Выходят из строя уже на первом месяце и ваш соперник норовит нажать побольше клавиш одновременно, чтобы заблокировать ваши движения и не дать провернуть комбо? А играть втроем-вчетвером? Это уже совсем невозможно. Хотя бы потому, что тесно и соперник норовит толкнуть Вас в бок.

Уверен многие видели в магазинах джойстики для компа, к примеру от Sony PlayStation.
К сожалению они стоят очень дорого, но почему бы не сделать такой самим? Существует вполне реальная возможность играть таким геймпадом/джойстиком на ПК - совместимом компьютере, даже не самом мощном. Большинство игр и программ не смогут отличить вашего устройства от фирменного джойстика за несколько $100. (почему то считается раз какой прибамбас к компьютеру, то обязательно стоить должен баснословные деньги) Самая фишка в том, что этот джойстик можно использовать в любой игре, просто при назначении клавиш назначайте их на кнопки джойстика.
Вообще GamePad - устройство очень похожее на аналоговый джойстик. Различие между типичным джойстиком и GamePadом - в характеристиках оси. Джойстики обычно имеют две оси - X и Y. Непрерывное движения рычага вдоль этих осей с помощью двух потенциометров преображаются в аналоговые электрические сигналы, которые потом с помощью АЦП преобразуются в цифровые, на основании которых вычисляются переменные X и Y. GamePad же имеет не-пропорциональные величине отклонения от центра величины X и Y для девяти позиций (включая центр), он гораздо проще по конструкции, и, следовательно, более надежен.
Конструкция очень простая. Просто дважды убедитесь прежде чем проверять сделанный вами интерфейс, убедитесь что все провода припаяны правильно, и, что никакие оголенные провода не касаются чего-нибудь. Я сильно рекомендую использовать корпус для этих интерфейсов, чтобы уменьшить риск короткого замыкания.

Начнем с джойстика для Dendy или NES.
Если у вас есть gamepad, и у него есть кнопки A, B, Turbo A, Турбо B, Select и Begin (последних двух может и не быть, настоятельно рекомендую такие не брать) и связывается через 5 проводов, тогда это или NES или аналог NES и будет работать если Вы все сделаете правильно.
Однако пора приступать к делу. Все, что вам понадобится - это разъем LPT порта (он же параллельный, он же от принтера), паяльник, 5 1N914 или 1N4148 диодов, ну и, собственно, сам джойстик. Приступим.

Посмотреть вложение 15

Вот сам разъем джойстика (правда похож на СОМ)

Посмотреть вложение 14

Спаивается все по схеме, если хотите подключить два джойстика, то все провода припаиваются также кроме 8 и 7 контакты на NES, их надо припаять к 11 и 12 контакту на LPT.

Посмотреть вложение 13

Чтобы припаять провода по схеме надо вскрывать разъем, я же предлагаю сделать все гораздо проще. Можно просто сделать своеобразный удлинитель переходник.
Помимо LPT нам понадобится еще и СОМ разъем(папа)

Посмотреть вложение 12

Еще очень важная деталь. На диодах есть маркировка, их следует припаивать полосочкой вверх. Просто припаиваете проводки по схеме к LPT и все.

Посмотреть вложение 11

Получается очень даже

Посмотреть вложение 10

Посмотреть вложение 9

Как его настроить я расскажу в конце статьи.
Чтобы получить максимальное удовольствие, я скачал эмулятор Dendy. Вкратце что такое эмулятор. Такая прога которая полностью эмулирует какую либо игровую приставку, игры для нее также подгружаются отдельно, любую игру можно качнуть в интернет.

Посмотреть вложение 8

Вот вам Suprer Mario.

Посмотреть вложение 7

А вот и черный плащ.
Только настоящий игровой гурман оценит это.

Ну а теперь джойстик для Sony Playstation (PSX).

Посмотреть вложение 6

Также можно использовать джойстики с двумя мини джойстиками внизу, он называется с шестью осями. Можно подключать и джойстики с обратной связью, то есть те которые вибрируют. Вот схема.

Посмотреть вложение 5

Диоды те же что и для Dendy. Для джойстиков с шестью осями и обратной связью необходимо питание 9 вольт. Для простых же джойстиков как у меня, питание можно и не делать. Но если уж хотите, то я рекомендую купить китайский маленький блок питания на 9в для подключения в розетку, они стоят не дороже доллара.

Хочу заметить что на схеме изображена обратная сторона порта для PS.

Посмотреть вложение 4

Посмотреть вложение 3

Посмотреть вложение 2

Просто срезаете сонявский коннектор и припаиваете LPT

Как подключить джойстик от приставки Денди/Dendy к компьютеру

Для того чтоб подключить второй джойстик, надо припаять все его провода также, но 9 контакт с PSX следует припаять на 13 контакт на LPT, а 1 контакт с PSX на 15 контакт на LPT. Вот и все.
Теперь конкретно о процедуре настройки, хотя тут дело еще проще.
Сначала надо скачать дрова DirectPad Pro (где скачать, гуглим, первоначальные источники более не существуют)
В панели управления Windows выбираете игровые устройства (иконку джойстика) и жмете кнопку "Добавить". В появившемся окне опять жмете кнопку "Добавить", а потом "Установить с диска".
Далее находите ту директорию, в которую вы распаковали архив драйвера и выбираете появившуюся строчку DirectPad Pro.Inf. После этого пару раз жмем ОК и добавляем устройство DirectPad Pro Standard And Force FeedBack
Затем в списке игровых устройств можно будет выбрать DirectPad Pro Controller и DirectPad Pro Force FeedBack Controller. Выбираем соотвествующий драйвер и в окне "Игровые устройства" появляется наш контроллер.

Посмотреть вложение 1

Теперь нажимаем кнопку "Свойства" и попадаем в окно конфигурации драйвера. Выбирайте затем выберите ID джойстика (пишется посередине сверху) и поставьте номер в списке, рядом с Conroller Type (он может и не быть 1, если до этого у вас в системе были установлены другие джойстики).
После этого выберите правильный адрес вашего LPT-порта (можно посмотреть в Системе: Устройства - Порты COM и LPT обычно 378).
Вот и все! В конечном итоге у Вас получился DirectInput совместимый джойстик, т.е. можно будет играть в любой windows игре, поддерживающей джойстик через драйверы DirectX. Необходимо только выбрать DirectPad Controller в настройках игры.

На работоспособность были протестированы: NFS Undergraund, Max Payne2, Worms 3D, GTA 3, GTA Vice city и т. д. Схемы на 100% работоспособны. Наслаждайтесь.

[shadow=blue]Скачать программу DirectPad Pro 6.0[/shadow]

 
[shadow=blue]Как проверить конденсатор мультиметром[/shadow]

В данном материале речь пойдет о том, как проверить конденсатор мультиметром, если вы нет прибора, проверяющего емкость конденсаторов – LC-метром.

Существует два вида конденсатора: полярные (электролитические конденсаторы), и неполярные к которым можно отнести все оставшиеся. Кондеры полярного типа получили свое название благодаря тому, что они припаиваются к радиоаппаратуре в строгом порядке: плюсовым контактом конденсатора к плюсовому контакту схемы.

Посмотреть вложение 6

В случае нарушения полярности такого конденсатора, он может выйти из строя, вплоть до взрывания.

Импортные конденсаторы располагаются на своей верхней части небольшим крестиком либо иной фигуркой, которые вдавлены в корпус. В этих местах корпус тоньше.

Посмотреть вложение 5

Это сделано для того чтобы обеспечить безопасность. По этой причине, если произойдет взрыв импортного конденсатора, то просто осуществиться раскрытие его верхней части. На изображении вы можете видеть вздувшийся конденсатор от материнской платы компьютера. Прорыв осуществлен точно вдоль линии.

Посмотреть вложение 4

[shadow=blue]Проверка конденсатора мультиметром[/shadow]
Для проверки конденсатора при помощи мультиметра, нужно придерживаться одного правила – емкость конденсатора не должен быть менее 0,25 мкФарад.


Перед тем, как проверить конденсатор мультиметром, следует определить его полярность. Для определения полярности конденсатора, достаточно внимательно посмотреть на его корпус, на нем должна быть нанесена маркировка. Обозначение минуса производиться при помощи галочки. Черная галочка, нарисованная поверх жирной золотой полосы и указателем минусового вывода.
Посмотреть вложение 3

Теперь, следует взять мультиметр, и выставить тумблер в режим прозвонки (или на сопротивление) и при помощи щупов касаемся контактов. Поскольку мультиметр в режиме прозвонки и измерения сопротивления выдает постоянное напряжение то конденсатор будет заряжаться и по мере заряда показатель сопротивления конденсатора будет расти.

Пока производиться зарядка, значение сопротивления растет, пока не станет слишком большим. Посмотрим, как это должно выглядеть.

Посмотреть вложение 2
Здесь только происходит касание контактов при помощи щупов.

Посмотреть вложение 1
Продолжаем держать, и смотрим за ростом сопротивления


пока оно не будет очень большое

Удобно проверять конденсаторы аналоговым мультиметром, поскольку в нем легко отследить поворот стрелки, о не мигающие цифры в цифровом мультиметре.

kak-provjerit-kondjensator-5.jpg


Если во время касания щупами конденсатора, мультиметр пищит и показывает ноль, то это говорит коротком замыкании в конденсаторе. Если мультиментр сразу показывает единичку, то в конденсаторе случился обрыв. В любой из описанных ситуаций, следует выкинуть конденсатор, поскольку он не рабочий.

Проверка неполярных конденсаторов производиться легче. Выставляем тумблер мультиметра на мегаОмы и прижимаем щупы к выводам конденсатора. Если значение сопротивления не дотягивает до 2-х МегаОм, то конденсатор можно считать неисправным.

[dropshadow=blue]Проверка конденсатор тестером видео[/dropshadow]

https://www.youtube.com/watch?v=YEhaDKOCCEw

Ну вот и все, теперь вы знаете как проверить конденсатор мультиметром. Если вам требуется проверить конденсатор с емкостью меньше 0,25 мкФарад, то придется воспользоваться специальным прибором.
 
ib_230888_smartphone-water_depo_1000_default.jpg


Попробуем расписать порядок действий в том случае, если вы случайно "окунули" свой гаджет.

1. Выключение

Если ваш смартфон оказался в воде, пиве, кока-коле или любой другой жидкости, первым делом нужно его выключить. Смартфоны на Android выключаются долгим нажатием на клавишу питания, iPhone (и iPad, кстати, тоже) - долгим нажатием на клавишу питания и "домашнюю" кнопку.

Это делается потому, что даже слабый электрический импульс, который через капельки воды передастся не туда, куда нужно, может вывести из строя микросхему (которых в смартфоне обычно несколько). Микросхемы абсолютно неремонтопригодны, заменой их ни один сервис-центр заниматься не будет. Поэтому вам предложат или выкинуть аппарат, или заменить всю системную плату целиком. Это означает, что вы потеряете все данные, которые не были сохранены в "облаке", и расстанетесь с серьезной суммой денег.
2. Батарея и карточки
Во вторую очередь нужно вынуть из телефона SIM-карточку, батарею и карту памяти. Съемная батарея - это большой плюс, поскольку без источника питания никакие электрические импульсы внутри смартфона не возникнут и к его порче не приведут. Карточки же от влаги могут просто испортиться - например покрыться налетом окиси - и перестать работать.

Если у смартфона снимается задняя крышка - снимите и оставьте в таком состоянии.

3. Покой и сон

Не пытайтесь тут же включать телефон и проверять его работоспособность. Это все равно что пытаться поставить на ноги человека, у которого сломан позвоночник. Только навредите. Почему - смотрите пункт номер один.

4. Фен под запретом

Ни в коем случае не пытайтесь просушить смартфон феном. Даже если вам кажется, что струя воздуха продула гаджет насквозь и удалила всю влагу - не верьте своим ощущениям. Враг коварен и хитер. На самом деле, на системной плате полным-полно укромных мест, где могут надолго спрятаться капельки воды. Например, пространство под микросхемой или между ее ножками. Какие-нибудь укромные ямки или впадины. И как вы ни дуйте и ни трясите - микроскопические капли еще сильнее закрепятся там.

5. Рис - враг или друг

Многие советчики рекомендуют положить смартфон в контейнер с рисом и оставить там на сутки или даже на двое. Якобы рис впитает в себя остатки влаги, оставшейся внутри аппарата. Стоит ли использовать такой способ?

Ответ - да, стоит, но вряд ли этого будет достаточно. Рис - это что-то вроде экстренной реанимации, которая не лечит пациента, а помогает ему дождаться долгой и серьезной операции.
Дело в том, что обычная питьевая вода содержит в себе большое количество разнообразных солей, которые останутся на внутренних поверхностях смартфона после ее испарения. Как именно повлияют эти соли, замкнув те или иные контакты - никто вам точно сказать не сможет. Возможно, аппарат будет странно работать, и вы решите, что проблема носит софтверный характер, но исправить ее у вас не получится. Возможно, внезапно отключится микрофон или прекратит работать Wi-Fi.

Несмотря на это, "рисовый способ" является весьма популярным. Если вы считаете, что смартфон не очень сильно пострадал от воды, можете попробовать его. Кстати, рис можно заменить на силикагель - вещество, впитывающее воду куда сильнее риса. Пакетики силикагеля встречаются, например, в коробках с новой обувью.
6. Экстренный случай
Однако фокус с рисом не пройдет, если вы залили свой телефон не водой, а чем-то другим. Например, пивом или сладкой газировкой. Сахар, красители и другие наполнители не сможет сдуть никакой фен и поглотить никакой рис. В этом случае проделайте все, что описано в пунктах с первого по третий, после чего положите телефон в пакетик и отправляйтесь в сервисный центр. Впрочем, даже с телефоном, просто побывавшим в воде, лучше отправиться туда же - специалисты знают, как при помощи щеточки и специального раствора полностью удалить все солевые отложения с системной платы и микросхем.

На всякий случай стоит пояснить: сервисный центр - это довольно большое помещение, где работают сертифицированные специалисты (часто это заведение является авторизованным центром какого-нибудь крупного бренда), где вас встречает сотрудник за стойкой, где вам выдают документы о приемке с мокрыми печатями. Покосившаяся будка с надписью "Ремонт телефонов любой сложности" - это не сервисный центр. Нести туда телефон можно только в одном случае - если вы хотите от него поскорее избавиться.
Источник: rg.ru
 
1432072821_1696816531.jpg


Сделать планшет из ноутбука было моим давним желанием. Вдохновившись раскопанными в сети материалами я приступил к работе. Что получилось из этой идеи – узнаём под катом. При желании делаем себе такой же.

Сразу извиняюсь за низкое качество некоторых фотографий – забыл сделать во время работ, пришлось довольствоваться тем, что есть.

В то время воплотить мою идею в жизнь было решительно невозможно – ноутбуки стоили приличных денег, и разбирать их мне бы никто не дал. Сейчас с этим проще, я уже много лет в той или иной степени вожусь с железом и как-то вокруг его скапливается весьма приличное количество, есть из чего выбирать.

В целом я прекрасно понимал, что это будет устройство для домашнего использования, потому что такой кирпич ящик в сумке не шибко-то потаскаешь с собой. В принципе, это и не требовалось, т.к. дополнительным стимулом к созданию этого планшета была необходимость моей матери в большом сенсорном экране для ее работ по подготовке рисунков.

О сенсорных экранах (Тач-скринах)
На данный момент рядовому пользователю доступны в основном три типа сенсорных экранов: резистивные, инфракрасные и емкостные. Искать на зарубежных сайтах можно по запросам «USB touchscreen kit». Впрочем, такие экраны можно купить и у нас в конторах, поставляющих запчасти для терминалов.

Кому интересны технические подробности – жмем сюда.Резистивные экраны состоят из двух проводящих слоев, изолированных друг от друга микроскопическими шариками диэлектрика. При нажатии на экран верхний слой продавливается, и точечно замыкается на нижний слой. По получившемуся электрическому сопротивлению контроллер рассчитывает координаты нажатия. Данный тип экранов наиболее дешев и доступен в качестве недорогого варианта для экспериментов. Из минусов – необходимо сравнительно сильное нажатие, чтобы нажатие было зарегистрировано. Работать вполне можно пальцем, но для повышения точности попадания все же лучше использовать некий стилус.Инфракрасные экраны представляют собой рамку с закрепленными в ней инфракрасными светодиодами по одной стороне и фототранзисторами по противоположной. Когда предмет касается экрана, он перекрывает собой луч светодиода для соответствующего фототранзистора и контроллер рассчитывает координаты нажатия. Это позволяет экрану быть совершенно равнодушным к тому, чем производится нажатие – стилусом, рукой, карандашом, чем угодно, лишь бы достаточно толстым чтобы перекрыть луч светодиода. Из плюсов – высокая прозрачность и долговечность. Из минусов – чувствительность к загрязнениям, и чуть более худшая точность определения координат. Стоимость средняя.Емкостные экраны основаны на измерении величины утечки тока при касании пальцем или другим проводящим предметом. Из минусов – необходимость использовать проводящие предметы для работы с таким экраном. C ними весьма удобно работать, но стоимость таких экранов высока, и для наших малобюджетных экспериментов, по моему мнению, не сильно подходит.

Выбираем жертву
На самом деле, модель исходного ноутбука особого значения не имеет, кроме пары моментов. Во-первых, соотношение сторон и габариты экрана должны соответствовать доступным в вашем городе моделям сенсорных стекол, о которых было рассказано выше. Во-вторых, лучше брать все же не такое старье, которое взял для эксперимента я – вам потом еще и работать на том, что получится.

Изначально донором должен был стать найденный на работе ноутбук Samsung. После того, как я разобрал его для прикидки внешнего вида выяснилось, что он в упор не видит USB – умер южный мост. Ну тут я сам виноват – неплохо было бы проверить это до разборки. Фотографии в первозданном виде не сохранилось, поэтому вот фото в виде бутерброда:
1432072869_1265654811.jpg

Первый донор для будущего планшета

После этого прискорбного открытия за основу был взят потрепанный старенький ноутбук Acer Aspire 3610, купленный за копейки где-то в темных катакомбах Митинского радиорынка. Как и все модели этой серии, он к тому времени обладал «замечательными» сломанными петлями верхней крышки, залитыми прошлым владельцем толстым слоем эпоксидной смолы и вторично сломанными.
1432072870_804732404.jpg

Вид ноутбука до начала работ

Меняем начинку
Некоторые комплектации этой модели снабжаются модулем Wi-Fi, но в моем случае его там не оказалось, и я со спокойной совестью скрутил адаптер с вышеописанного Самсунга вместе с антеннами. Антенны были размещены с правого торца внутри корпуса, а провода к ним были проложены прямо по плате ноутбука и приклеены на двухсторонний скотч в нескольких местах, чтобы не мешали сборке.
1432072870_859095429.jpg

Установленный Wi-Fi адаптер

В моей комплектации был Bluetooth адаптер, но он был сразу безжалостно выброшен за полной его ненадобностью. В этой модели есть возможность поднять тактовую частоту процессора, вставив перемычку в его сокет, но я решил не искушать судьбу и таких экспериментов не проводить. Покупать под это дело третий ноутбук совсем не хотелось. DVD привод вместе с корпусом PCMCIA слота был удален за ненадобностью и в целях облегчения веса конструкции.

Модифицируем материнскую плату
Изначально я хотел перенести кнопки и индикаторы на торец планшета, и даже сделал плату и адаптер для всего этого добра, но в процессе работы над стенками корпуса я понял, что это излишне усложнит процесс сборки, и решил не растягивать и без того растянувшийся эксперимент. Было решено выбросить адаптер Bluetooth и использовать его кнопку включения для управления питанием планшета. На самом деле, изменения совсем не сложные, и для данной модели так может сделать человек, обладающий хоть сколько-нибудь малым навыком пайки. В нижней части платы расположены кнопки управление Bluetooth и WiFi. Выбираем кнопку с надписью «blue2» или похожей, и безжалостно перерезаем эту дорожку. Определить ее довольно просто: у кнопки четыре ножки, три из них соединены с «землей», т.е. с большой сплошной областью на плате, а одна – с этой самой дорожкой.
1432072870_2126482952.jpg

Отключаем кнопку Bluetooth

Далее нужно соединить штатную кнопку питания с нашей новой кнопкой. Определить нужный контакт также несложно: два контакта из четырех соединены с «землей», а два противоположных – с еще одной дорожкой. Берем любой тонкий провод и припаиваем его концами к найденным контактам на обеих кнопках
1432072870_1664824826.jpg

Штатная кнопка включения
1432072871_1557322566.jpg

Новая кнопка включения

Шлейф контроллера сенсорного экрана мы припаиваем к любому ненужному USB порту. Им придется пожертвовать и залепить его снаружи эпоксидкой. Можно выпаять один из разъемов, а можно просто подпаяться к его контактам. Сразу предупреждаю: выпаивать разъем без опыта подобного действа не рекомендуется – это довольно тяжело и есть шанс повредить близлежащие элементы материнской платы. Гораздо проще подпаяться к контактам. Кстати, можно припаять не шлейф контроллера, а маленький USB-хаб и в него уже воткнуть контроллер. Получим несколько дополнительных портов внутри ноутбука.

Кузовные работы
Это, без сомнения, самая муторная и грязная часть работы. От всего корпуса была оставлена только задняя крышка, внутренняя рамка дисплея и кусочек верхней внутренней крышки (Той, в которой крепится клавиатура).
1432072871_1552775340.jpg

Оставляем лишь небольшой кусочек крышки

Стенки выводились вручную с помощью эпоксидного пластилина. Вот такого:
1432072871_1951619690.jpg

Эпоксидный пластилин

Работать с ним очень просто: отрезаем кусочек, и тщательно разминаем в смоченных водой пальцах в перчатках. Важно тщательно перемешать его до однородного цвета. Пластилин быстро разогревается, и остается некоторое время весьма пластичным. Рекомендую не отрезать кусок более 2см длиной, так как этого количества может оказаться много для одной стенки, а впопыхах лепить его куда-нибудь чтобы не испортился — не самая хорошая идея. Лучше не торопиться — будет качественней.

Общая технология такова формирования стенок такова: берем достаточно длинную пластину (например, линейку), оклеиваем ее широким скотчем, чтобы к ней не лип пластилин, и формируем плоскую стенку в нужном месте корпуса. По застывании пластилина линейка легко отделяется от эпоксидки и оставляет прекрасную ровную поверхность.
1432072872_1820963894.jpg

Стенка корпуса из эпоксидного пластилина, вид на внутреннюю черновую сторону.

Обратите внимание: чтобы получить ровную линию между верхней и нижней крышками, я выводил боковые стенки на уже собранном планшете, а потом распиливал вдоль тонкой дисковой пилкой на бормашинке. Получалась тонкая аккуратная щель, как на заводском пластике.

Для крепления крышки я пошел на хитрость — я изготовил новые ножки крепления, под свои отверстия. Технология такова — берем лист бумаги, сворачиваем его на карандаше, отрезаем на нужную длину, заливаем жидкой двухкомпонентной эпоксидкой, и прижимаем к нужному месту. Получается вот такой столбик:
1432072872_2039685135.jpg

Заготовка для ножки крепления дисплея

После отверждения сверлим вершину столбика, и вклеиваем (той же жидкой эпоксидкой) в нее гайку, выломанную из крепления крышки или корпуса. Собственно, все винты заворачиваются в такие гаечки, их можно много наковырять из исходного корпуса.
1432072872_2046931316.jpg

Ножка крепления дисплея со врезанной гайкой

Дисплей крепится к рамке по той же технологии, только гаечки вклеиваются непосредственно на рамку дисплея. Дисплейный модуль теперь представляет собой стопку «рамка-тачскрин-дисплей». Т.е. просто накладываем тачскрин вплотную на дисплей и и притягиваем к рамке винтами за штатные крепления.
1432072873_1832398769.jpg

Крепление дисплея к рамке

Антенны Wi-Fi прокладываем как позволяет свободное пространство. Я не очень заморачивался с расположением антенн, но качество сигнала не ухудшилось. То же самое с блоком управления тачскрином – ему все равно, где лежать.
1432072873_783420927.jpg

Крепление Wi-Fi антенны и вид на стенку из эпоксидного пластилина

Шлейф и инвертор можно проложить вот так, не придется перепаивать и ничто нигде не мешается:
1432072874_1418629631.jpg

Новая прокладка шлейфа и инвертора
1432072874_1978092720.jpg

Контроллер сенсорного экрана

Наводим лоск
Шлифовка всего этого добра доставила немало хлопот и привнесла в мою комнату большое количество акриловой пыли, но это того стоило. Я использовал обычную акриловую шпатлевку (по-моему, даже по дереву) белого цвета и саму простую матовую краску черного цвета из баллончика. Работа не очень сложная, но требует аккуратности и некоторого терпения. Я так развлекался в первый раз и все прошло успешно. Фотографий процесса у меня нет, так как фотографировать грязными руками не было возможности, а попросить кого-то я в запале сражения со шпатлевкой я как-то не догадался.

Стремимся к совершенству
Простор для фантазии ограничивается только вашей усидчивостью и бюджетом. Конечно, можно было найти и процессор пошустрее, благо сокет это позволяет, и вставить маленький SSD диск для ускорения системы, но планшетик получился и так весьма приятным. Емкостной тачскрин сделал бы работу с планшетом еще более приятной, но его цена меня отпугнула сразу.

Операционная система
В качестве операционной системы я сразу выбрал Windows XP Tablet Edition, чтобы не думать о специфических планшетных фишках, и не испытывать проблем с производительностью. На эту платформу можно поставить и Windows 7, но она будет весьма и весьма нетороплива. Кстати говоря, я с успехом ставил на него xUbuntu и даже Android из проекта Android x86! Драйвера планшета для Linux и Windows (и даже MacOS вроде бы) идут на прилагаемом к тачскрину диске.

Результаты
1432072874_950512746.jpg

1432072821_1696816531.jpg

1432072874_1903699465.jpg

1432072875_2097596126.jpg

1432072875_167017489.jpg

1432072876_1404912207.jpg

Немного телевизора
О моем планшете даже сделали репортаж на канале «Подмосковье». Конечно, там хватает ляпов типа «выбросил материнскую плату», но это передача не техническая, а развлекательная, так что, я думаю, редакторам можно их (ляпы) простить
http://ageofcomp.info/wounde/34518-delaem-planshet-iz-noutbuka.html
 
[shadow=blue]Антенна GSM своими руками[/shadow]

В последнее время в России значительно увеличилась зона покрытия сетями стандарта GSM 900. Тем не менее ситуация далека от идеальной. Если в европейских странах проблема неуверенного приема практически отсутствует, то большинство отечественных пользователей частенько с ней сталкиваются - в загородных домах, на дачах и т. д. А как было бы замечательно выехать на рыбалку, охоту, в деревню, не теряя связь с внешним миром!

Ключ к решению этой проблемы - внешние направленные или ненаправленные антенны. Правда, купить антенну мало - необходимо ее правильно установить и настроить. Читатели, знакомые с радиоэлектроникой, смогут самостоятельно изготовить и настроить антенну, работающую в стандарте GSM. Сегодня мы расскажем о типах антенн и о способах их установки и настройки.

Справка

Говоря совсем просто, мобильный телефон представляет собой дуплексную радиостанцию, ведущую радиообмен на разных частотах. Всего в стандарте GSM 900 124 частоты. Телефон, как и базовая станция, может работать на любой частоте, определяемой оператором.

Базовая станция (BS) передает, а телефон (MS) принимает на частотах 935,2 - 959,8 МГц. Мобильный телефон передает, а базовая станция принимает на частотах 890,2 - 914,8 МГц. Канал от BS к MS называется Down Link, от MS к BS - Up Link. Большинство операторов используют ограничение дальности работы мобильного телефона от базовой станции - 35 км, что обусловлено особенностями стандарта. Поясним, что в сети стандартной конфигурации в одном частотном канале формируется 8 временных интервалов (тайм-слотов): один служебный, а семь - разговорные. Именно в этом случае максимальная дальность связи на каждом канале составляет 35 км. Однако в GSM предусмотрена также нестандартная конфигурация соты, при которой дальность связи увеличивается на 70 - 100 км (конфигурация Extended Cell). К сожалению, при такой конфигурации количество разговорных каналов уменьшается до 2 - 3, что уменьшает емкость сети. Использовать такой режим в городе и около оператору не выгодно. Иногда этот режим используется на морском побережье для создания прибрежной зоны покрытия.

Таким образом, если у вас телефон стандарта GSM 900, не пытайтесь установить связь, удалившись от ближайшей базовой станции больше чем на 35 км. Максимальная дальность связи, достигнутая мной, - 34 км.

Дальность связи

На дальность радиосвязи влияют следующие факторы:

Местоположение BS и MS и рельеф местности.

Мощность и чувствительность MS.

Мощность и чувствительность BS.

Используемые на MS и BS антенны.

Воля Господа Бога (опытные связисты шутят, что это - главное).

Обычно базовые станции имеют мощность 20 - 30 Вт. Антенны применяются либо штыревые, либо направленные. Чувствительность базовых станций составляет -100 дБ - 115 дБ. Изменить или повлиять на все эти параметры пользователь, конечно, не может. Выходная мощность телефона составляет 0,3 - 2 Вт, чувствительность - 90 - 105 дБ. Чувствительность телефона в основном определяется технологиями, используемыми при создании малошумных входных устройств. Если в зонах уверенного приема разница в чувствительности и мощности между моделями практически незаметна, то в зоне неуверенного приема она может стать критической. Зачастую трубка показывает уровень сигнала от базовой станции 1 - 2 кубика (по шкале), а установить соединение не может: не хватает мощности. И хотя стандартизация ETSI регламентирует стандартные выходные мощности для каждого класса телефонов, реальное значение может незначительно колебаться. Хорошей чувствительностью отличаются трубки SAGEM, Alcatel, Motorola. А по мощности проходят все старые телефоны, особенно Motorola. Все телефоны фазы 2 имеют примерно одинаковую мощность.

Что же касается рельефа, то на ровной местности и по реке волны распространяются лучше. Чем выше вы находитесь (в разумных пределах), тем лучше сигнал. Лес порой "гасит" волны сильнее, чем городская застройка.

Поиск сигнала

Итак, вы выбрались за город и хотите обеспечить себя связью. Поднимитесь на крышу, чердак или на самую высокую точку рядом с домом или нужным вам местом. Если телефон ловит сеть, но на пределе (или нестабильно), у вас есть все шансы поправить дело, используя внешнюю антенну. Если расстояние до станции меньше 30 км, а сеть не ловится, также попробуйте применить антенну. В последнем случае попытайтесь договориться с продавцов о возврате антенны, если эксперимент провалится.

Если сигнал, хоть и очень слабый, был все же пойман, наберите любой городской номер - для проверки. Если при разговоре слышимость нормальная и собеседник не жалуется на выпадение кусков вашей речи, значит, энергетика обеих линий (UL и DL) сбалансирована и можно использовать стандартную антенну, настроенную на среднюю частоту между частотами приема и передачи. Если же собеседник время от времени пропадает, необходимо "усиливать" нисходящее направление от базовой станции к вашему телефону. Возможно, стоит поискать телефон с лучшей чувствительностью. Но если плохо слышно вас, следует усиливать направление от вашего телефона до базовой станции. Уже на данном этапе понятно, что при выборе типа антенны и ее параметров желательно учитывать данные оператора и условия приема.

В зонах неуверенного приема часто наблюдается интерференция (помехи) между каналами с одинаковыми и соседними частотами. К сожалению, частотный ресурс, выделенный операторам GSM 900 в России, ограничен, из-за чего в зоне неуверенного приема часто "видны" частоты от разных базовых станций с одинаковыми или соседними значениями уровня сигнала. Такие частоты создают взаимные помехи, мешающие связи, а при определенных уровнях сигналов связь становится и вовсе невозможной. Если на экране телефона фиксируется сильный сигнал от базовой станции, а установить соединение не удается или удается, но речь все время пропадает, значит, вы столкнулись с "чужаками". "Заставить" телефон выбрать другую частоту получается далеко не всегда, однако специальная функция телефонов Nokia - Netmonitor - это сделать позволяет.

С подобной проблемой я столкнулся на даче, которая отделяется от крупного города довольно-таки открытым пространством. Телефон принимал соседние частотные каналы с уровнями 70 дБ, 73 дБ и 72 дБ, но качество связи оставляло желать лучшего. Спас меня только принудительный выбор другого частотного канала с меньшим уровнем - 80 дБ. Однако при ограниченном частотном ресурсе даже частотное перепланирование сети выручает далеко не всегда. Тем не менее, если в вашем телефоне отсутствует Netmonitor, можно использовать внешнюю направленную антенну с хорошей диаграммой направленности. Остается только сделать правильный выбор.

Выбор антенны

Как уже говорилось, увеличить дальность и качество связи позволяют именно внешние антенны. Для телефонов в основном используются внешние штыревые и логопериодические антенны, а также антенны типа волновой канал. Повторим, что в Западной Европе отсутствуют зоны неуверенного приема. Поэтому направленные антенны для терминалов GSM 900 практически не выпускаются. Если производитель и предлагает направленную фирменную антенну GSM 900, она, как правило, предназначена для работы с ретрансляторами (репитерами) операторов.

В СНГ и Восточной Европе направленные антенны изготавливаются кустарным способом. Кроме того, есть не- большие заводики в Чехии, Польше и Прибалтике. Простая автомобильная магнитная антенна имеет усиление 1 - 3 дБ (1 - 2 кубика по шкале телефона), волновой канал - 7 - 15 дБ (в зависимости от количества элементов, качества сборки и настройки антенны), что составляет уже 2 - 3 кубика по шкале, а логопериодическая антенна - 7 - 12 дБ. Автомобильная антенна представляет собой вертикальный штырь в 3/4, 1/2 или 5/8 длины волны. Даже простая автомобильная антенна, поднятая повыше, может поправить ситуацию с неуверенной связью. Дело в том, что при разговоре по телефону около 10 - 20% энергии поглощается телом пользователя, поэтому, поднимая штыревую антенну вверх, вы уменьшаете влияние на нее окружающих предметов. Я сам наблюдал, как самодельные, полуволновые и вертикальные диполя, поднятые на 5 м, решали проблему связи. Поясним, как такой диполь изготавливается.
sotov10-1.jpg

Рис. 1. Вертикальный диполь

Зачищаем c одного конца белый телевизионный кабель RG6U. Получаем центральный проводник и оплетку кабеля. К центральному проводнику припаиваем медный провод любой толщины длиной около 8,2 см (для диапазона 900 МГц) и крепим его вертикально вверх. К оплетке припаиваем второй кусок провода такой же длины и крепим его вертикально вниз (рис. 1). Получаем нечто похожее на букву "Т", положенную набок. (В телевидении используется горизонтальная поляризация, а в GSM - вертикальная, поэтому требуется именно такой диполь.) Другой конец кабеля подключаем через переходник к телефону. Будьте внимательны и не замкните центральную жилу с оплеткой, иначе телефон может сгореть. Ну вот, за 5 минут мы соорудили примитивную антенну, не уступающую по параметрам китайским автомобильным.

Приведу историю из жизни. Приехав прошлым летом на отдых в Крым, я обнаружил, что на базе обещанного оператором уверенного покрытия нет. Это означало, что я пропущу очень важный звонок. Уверенный сигнал обнаружился на крыше коттеджа, но перспектива просидеть там две недели меня не вдохновила. За 5 минут я нашел кусок нужного провода (вместо медного использовал алюминиевый). Еще 10 минут ушло на то, чтобы отыскать у соседей 5-метровый кусок телевизионного кабеля. Nokia 7110 имеет механический коммутатор для внешней антенны, поэтому я просто воткнул центральный проводник кабеля прямо в разъем телефона, а оплетку кабеля соединил с металлическим ободком внешнего разъема телефона. Укрепил антенну на крыше домика и уже через 10 минут на радость семье и на зависть соседям свободно общался по телефону.

Как говорится, вернемся к нашим баранам. Сначала воспользуемся автомобильной штыревой антенной ($5 - 10).

Здесь главное - не нарваться на слишком скверное качество. Имея Netmonitor, проверить антенну гораздо легче. При подключенной к телефону автомобильной антенне уровень сигнала должен увеличиться на 1 - 3 дБ (например, с -60 дБ до -57 дБ). В крайнем случае, сигнал должен остаться прежним. Если при подключении антенны сигнал уменьшится на 5 дБ и больше, лучше отказаться от покупки. Хочу заметить, что хорошая фирменная автомобильная антенна стоит от $40 и выше. Впрочем, и среди азиатских 10-долларовых изделий иногда встречаются неплохие вещицы.

Установленная на крышу вашего "домика в деревне", автомобильная антенна способна решить проблему со связью. Если усиления автомобильной антенны не хватает, можно обратиться к другим - например, к распространенной направленной антенне - волновому каналу. Он выглядит, как обычная телевизионная антенна, установленная на крыше дома.

Волновой канал позволяет получить реальное усиление до 7 - 15 дБ с оптимальной диаграммой направленности. Но у него есть недостаток - узкополосность. Разница между частотой приема и частотой передачи в GSM 900 составляет 45 МГц, а весь рабочий диапазон - 890 - 960 МГц (полоса в 70 МГц). Добиться линейной или близкой к линейной характеристики в таком широком диапазоне затруднительно. Поэтому желательно изготавливать волновой канал в зависимости от частоты оператора и конкретного места и в зависимости от ситуации сдвигать резонанс к частоте восходящего или нисходящего направлений. Для большей широкополосности следует использовать только петлевой вибратор, согласовывая его с кабелем - например, с симметрирующей петлей; также следует ограничиться небольшим количеством элементов, скажем, 3 - 12, так как если их будет больше, настроить антенну без оборудования будет трудно, кроме того, рабочий диапазон антенны сужается.

Мне приходилось иметь дело с множеством волновых каналов, изготовленных кустарно. Констатирую: в большинстве антенн коэффициент усиления составлял менее 7 дБ, некоторые имели резонанс на частотах 700 - 800 МГц вместо GSM-диапазона и коэффициент стоячей волны больше 3 (при передаче это может легко вывести из строя выходной каскад телефона). Профессионально изготовленные и настроенные самодельные антенны встречались редко.

Теперь на очереди - логопериодические антенны (их тоже можно отыскать на радиорынке). По сравнению с волновым каналом они имеют более широкий рабочий диапазон. Поэтому такие антенны менее критичны к точности изготовления и настройки. Реальный коэффициент усиления здесь достигает 10 - 14 дБ.

Теоретически при необходимости можно соединить 2 волновых канала, один - настроенный на частоту приема, другой - на частоту передачи, но это уже слишком сложная система.

Кабель и антенные переходники

В диапазоне 900 МГц вопрос выбора кабеля приобретает первостепенную роль. Отечественные телевизионные коаксиальные кабели можно использовать только ограниченно (затухание более 30 дБ на 100 м слишком велико). Из доступных импортных образцов подойдет RG6 - коаксиальный кабель с двойной оплеткой. Его вы найдете в любом магазине. Затухание составляет 20 - 24 дБ на 100 м (проверял экспериментально). Промышленные штыревые автомобильные антенны обычно включают в себя кабель RG59 с затуханием 28 дБ на 100 м. Антенна типа волновой канал с коэффициентом усиления 12 дБ и 10 м кабеля RG6U дают общее усиление 9,6 дБ, а при 20 м - 7 дБ.

На большинстве телефонов есть разъем для внешней антенны. Кроме того, для каждого типа телефона существует так называемый антенный переходник (около $5), он подключается к указанному разъему и представляет собой короткий кусок кабеля, с одной стороны которого находится специфический телефонный высокочастотный разъем, а с другой - стандартный ВЧ-разъем. Обычно затухание в антенном переходнике не превышает 1 дБ. Покупая антенный переходник, убедитесь в его дееспособности. При включении переходника в телефон встроенная в телефон антенна отключается и выходной каскад переключается на переходник. Иными словами, если вы просто подключаете переходник к телефону, сигнал на шкале телефона должен немного упасть. Потом вы подключаете внешнюю антенну к переходнику, и сигнал увеличивается. Если все идет именно так, значит, переходник работает.

Настройка антенны на местности

Итак, вы купили антенну и подключили ее к кабелю и к телефону. Поднялись на высокую точку и приступили к настройке антенны. Разместите телефон так, чтобы был виден экран. Как уже говорилось, при настройке антенны с аппаратами Nokia лучше всего использовать функцию Netmonitor. В большинстве других телефонов можно ввести специальный код и открыть служебное меню, которое позволяет увидеть приемный уровень 6 - 8 частот, принимаемых телефоном в порядке убывания, номера частот, расстояние до базовой станции, процент ошибок в канале и др. (Описание многих сервисных меню см. на: www.3ton.com/gsm.) Если Netmonitor есть, будем ориентироваться по уровню сигнала в децибелах (напоминаем, что сигнал сильнее, когда значение уровня в децибелах меньше). Если он отсутствует, будем настраиваться по стандартной шкале сигнала.

Так как антенны базовых станций GSM 900 имеют вертикальную поляризацию, волновой канал следует размещать вертикально. При юстировке антенн обратите внимание на то, что приемный уровень сигнала, отображаемый в телефоне, изменяется с задержкой до нескольких секунд, поэтому антенну следует поворачивать медленно и дискретно. Если вам известно направление на ближайший город, начните с него. Медленно поворачивайте антенну по горизонту. Если сигнал найден, ваша задача найти направление, откуда сигнал приходит с максимальным уровнем. Если сигнала нет, медленно поворачивайте антенну по горизонту, пока он не появится. Помните, что каждый метр высоты установки антенны может оказаться решающим. Если сигнал не найден, попробуйте переместиться на несколько метров в сторону и поискать снова. Может быть, вам повезет.

Нежелательно использовать кабель между антенной и телефоном длиной более 30 м: в этом случаи практически весь сигнал теряется в кабеле.

Напоследок приведем размеры самодельной логопериодической антенны для диапазона 850 - 950 МГц (рис. 2). Размеры взяты с сайта www.atnn.ru. Программу для расчета антенны-волновой канал опять-таки можно найти на: www.3ton.com/gsm.

Номер элемента

Общая длина вибраторов (мм)

Расстояние от предыдущего элемента (мм)

Расстояние от конца бума (мм)

w5qyECow.png


Параметры: коэффициент усиления - 8,3 дБ, волновое сопротивление - 60 Ом.
sotov10-2.jpg

Рис. 2. Логопериодическая антенна
 
[shadow=blue]Модернизация ноутбука. Жёсткий диск вместо оптического привода[/shadow]

Большинство материнских плат ноутбуков имеют на борту два SATA разъёма. Один используется для подключения жёсткого диска (HDD), другой для привода оптических дисков (ODD). В наше время оптический привод практически потерял актуальность, поэтому вместо него я буду подключать дополнительный жёсткий диск. Проблема в том, что оптический привод и жёсткий диск имеют разные разъёмы. Для подключения жёсткого диска вместо оптического привода нужно сделать переходник. Об этом и пойдёт речь в статье.

Для изготовления переходника нам понадобится:

1). Разъём Slimline SATA Male (13-pin)

Его можно взять из старого оптического привода. Если привода у вас нет, прогуляйтесь до ближайшего ремонтного сервиса. Нерабочий привод вам отдадут бесплатно.
comp183-1.jpg

2). Стандартный кабель SATA Female (7-pin) - SATA Female (7-pin)

Такой кабель можно купить в любом компьютерном магазине рублей за 15. Либо обменять у соседа-компьютерщика на банку холодного пива.
comp183-2.jpg

3). Разъём питания SATA Female (15-pin)

Этот разъём можно отрезать с нерабочего компьютерного блока питания ATX. Если нету блока питания, зайдите в ремонтный сервис. Вам отдадут штук 10 сгоревших блоков питания.
comp183-3.jpg

4). Эпоксидный клей

Самая дорогая часть нашего переходника. Продаётся в автомагазинах и хозмагазинах. Вместо эпоксидного клея можно использовать термосопли.
comp183-4.jpg

Приступаем к изготовлению переходника
Разбираем привод, извлекаем плату с разъёмом.
comp183-5.jpg

Плата будет несущей конструкцией нашего переходника. Поэтому обрезаем её по длине, демонтируем все компоненты.

Затем разрезаем SATA (7-pin) кабель. Внутри мы видим две экранированные пары для приёма/передачи сигнала
comp183-6.jpg

Зачищаем примерно 1 сантиметр кабеля.
comp183-7.jpg

Снимаем экранирующую оболочку
comp183-8.jpg

Из разъёма питания SATA (15-pin) удаляем линию 12 Вольт (жёлтый + чёрный), оставляем только линию на 5 Вольт (красный + чёрный).
comp183-9.jpg

Аккуратно припаиваем провода согласно схемы.
comp183-10.jpg

Фиксируем провода при помощи пластиковых стяжек.
comp183-11.jpg

comp183-12.jpg

Всё это безобразие заливаем эпоксидным клеем.
comp183-13.jpg

Переходник готов.
comp183-14.jpg

Берём ноутбук, включаем его и заходим в BIOS. Находим список загрузочных устройств. Здесь мы видим строку "SATA ODD" - привод оптических дисков.
comp183-15.jpg

Отключаем ноутбук, демонтируем привод оптических дисков. Вместо привода подключаем жёсткий диск через наш переходник.
comp183-16.jpg

Включаем ноутбук.
comp183-17.jpg

Заходим в BIOS. В списке загрузочных устройств теперь два жёстких диска. Первый - штатный, второй - наш самопальный.
comp183-18.jpg

Таким образом, вместо бесполезного привода можно подключить дополнительный жёсткий диск. Ну а вообще, данный переходник будет использоваться в составе ПК с пассивной системой охлаждения. Собирать его я буду на "ноутбучной" платформе, в системе будет два жёстких диска.
http://cxem.net/comp/comp183.php
 
[shadow=blue]Включение 3-х фазного двигателя в однофазную сеть[/shadow]

В домашнем хозяйстве иногда возникает необходимость запустить 3х фазный асинхронный электродвигатель (АД). При наличии 3х фазной сети это не составляет трудностей. При отсутствии 3х фазной сети двигатель можно запустить и от однофазной сети, добавив в схему конденсаторы.

Конструктивно АД состоит из неподвижной части – статора, и подвижной – ротора. На статоре в пазах укладываются обмотки. Обмотка статора представляет собой трёхфазную обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120 эл. градусов. Концы и начала обмоток выводятся в соединительную коробку. Обмотки образуют пары полюсов. От числа пар полюсов зависит номинальная частота вращения ротора двигателя. Большинство общепромышленных двигателей имеют 1-3 пары полюсов, реже 4. АД с большим числом пар полюсов имеют низкий КПД, больше габариты, поэтому используются редко. Чем больше пар полюсов, тем меньше частота вращение ротора двигателя. Общепромышленые АД выпускаются с рядом стандартных скоростей вращения ротора: 300, 1000, 1500, 3000 об/мин.

Ротор АД представляет собой вал, на котором находится короткозамкнутая обмотка. В АД малой и средней мощности обмотку обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями отливают короткозамкнутые кольца и торцевые лопасти, осуществляющие вентиляцию машины. В машинах большой мощности обмотку выполняют из медных стержней, концы которых соединяют с короткозамкнутыми кольцами при помощи сварки.

При включении АД в 3ф сеть по обмоткам по очереди в разный момент времени начинает идти ток. В один период времени ток проходит по полюсу фазы А, в другой по полюсу фазы В, в третий по полюсу фасы С. Проходя через полюса обмоток, ток поочередно создает вращающее магнитное поле, которое взаимодействует с обмоткой ротора и заставляет его вращаться, как бы подталкивая его в разных плоскостях в разный момент времени.

Если включить АД в 1ф сеть, вращающий момент будет создаваться только одной обмоткой. Действовать на ротор такой момент будет в одной плоскости. Такого момента не достаточно, чтоб сдвинуть и вращать ротор. Чтобы создать сдвиг фазы тока полюса, относительно питающей фазы, применяют фазосдвигающие конденсаторы рис.1.
electric96-1.jpg

Рис.1

Конденсаторы можно применять любых типов, кроме электролитических. Хорошо подходят конденсаторы типа МБГО, МБГ4, К75-12, К78-17. Некоторые данные конденсаторов приведены в таблице 1.
electric96-2.jpg

Если необходимо набрать определенную емкость, то конденсаторы следует соединить параллельно.

Основные электрические характеристики АД приводятся в паспорте рис.2.
electric96-3.jpg

Рис.2

Из паспорта видно, что двигатель трехфазный, мощностью 0,25 кВт, 1370 об/мин, есть возможность менять схему соединения обмоток. Схема соединения обмоток «треугольник» при напряжении 220В, «звезда», при напряжении 380В ,соответственно ток 2,0/1,16А.

Схема соединения «звезда» изображена на рис.3. При таком включении к обмоткам электродвигателя между точками АВ (линейное напряжение Uл) подводится напряжение в electric96-4.png раза больше напряжения между точками АО (фазное напряжение Uф).
electric96-5.png

Рис.3 Схема подключения «звезда».

Таким образом линейное напряжение в electric96-4.png раза больше фазного напряжения: electric96-6.png. При этом фазный ток Iф равен линейному току Iл.

Рассмотрим схему соединения «треугольник» рис. 4:
electric96-7.png

Рис.4 Схема соединения «треугольник»

При таком соединении линейное напряжение UЛ равное фазному напряжению Uф., а ток в линии Iл в electric96-4.png раза больше фазного тока Iф: electric96-8.png.

Таким образом если АД рассчитан на напряжение 220/380 В, то для его подключения к фазному напряжению 220 В используется схема соединения обмоток статора «треугольник». А для подключения к линейному напряжению 380 В – соединение «звезда».

Для пуска данного АД от однофазной сети напряжением 220В нам следует включить обмотки по схеме «треугольник», рис.5.
electric96-9.png

Рис.5 Схема соединения обмоток ЭД по схеме «треугольник»

Схема соединение обмоток в выводной коробке показана на рис. 6
electric96-10.png

Рис.6 Соединение в выводной коробке ЭД по схеме «треугольник»

Чтобы подключить электродвигатель по схеме «звезда» необходимо две фазные обмотки подключить непосредственно в однофазную сеть, а третью – через рабочий конденсатор Ср к любому из проводов сети рис. 6.

Соединение в выводной коробке для схемы «звезда» изображено на рис. 7.
electric96-11.png

Рис.7 Схема соединения обмоток ЭД по схеме «звезда»

Схема соединение обмоток в выводной коробке показана на рис. 8
electric96-12.png


Рис.8 Соединение в выводной коробке ЭД по схеме «звезда»

Емкость рабочего конденсатора Ср для данных схем рассчитывается по формуле:
electric96-13.png

где Iн- номинальный ток, Uн- номинальное рабочее напряжение.

В нашем случае, для включения по схеме «треугольник» емкость рабочего конденсатора Cр = 25 мкФ.

Рабочее напряжение конденсатора должно быть в 1.15 раз больше номинального напряжения питающей сети.

Для пуска АД не большой мощности обычно достаточно рабочего конденсатора, но при мощности более 1.5 кВт двигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применить еще пусковой конденсатор Сп . Емкость пускового конденсатора должна быть в 2.5-3 раза больше емкости рабочего конденсатора.

Схема соединения обмоток электродвигателя, соединенных по схеме «треугольник» с применением пусковых конденсаторов Сп представлена на рис. 9.
electric96-14.png

Рис.9 Схема соединения обмоток ЭД по схеме «треугольник» с применением пусковых конденсатов

Схема соединения обмоток двигателя «звезда» с применением пусковых конденсаторов представлена на рис. 10.
electric96-15.png

Рис.10 Схема соединения обмоток ЭД по схеме «звезда» с применением пусковых конденсаторов.

Пусковые конденсаторы Сп подключают параллельно рабочим конденсаторам при помощи кнопки КН на время 2-3 с. При этом скорость вращения ротора электродвигателя должна достигнуть 0.7…0.8 от номинальной скорости вращения.

Для запуска АД с применением пусковых конденсаторов удобно применять кнопку рис.11.
electric96-16.jpg

Рис.11

Конструктивно кнопка представляет собой трехполюсный выключатель, одна пара контактов которого замыкается, когда кнопка нажата. При отпускании контакты размыкаются, а остальная пара контактов остается включенной, до тех пор, пока не будет нажата кнопка стоп. Средняя пара контактов выполняет функцию кнопки КН (рис.9, рис.10), через которую подключают пусковые конденсаторы, две остальных пары работают как выключатель.

Может оказаться так, что в соединительной коробке электродвигателя концы фазных обмоток выполнены внутри двигателя. Тогда АД можно подключить только по схемам рис.7, рис. 10, в зависимости от мощности.

Существует еще схема соединения обмоток статора трехфазного электродвигателя - неполная звезда рис. 12. Выполнение соединения по данной схеме возможно, если начала и концы фазных обмоток статора выведены в соединительную коробку.
electric96-17.png

Рис.12

Подключать ЭД по такой схеме целесообразно, когда необходимо создать пусковой момент, превышающий номинальный. Такая необходимость возникает в приводах механизмов с тяжелыми условиями пуска, при пуске механизмов под нагрузкой. Следует отметить, что результирующий ток в питающих проводах превышает номинальный ток на 70-75%. Это необходимо учитывать при выборе сечения провода для подключения электродвигателя

Емкость рабочего конденсатора Ср для схемы рис. 12 рассчитывается по формуле:
electric96-18.png


Емкости пусковых конденсаторов должны быть в 2.5-3 раза больше емкости Ср. Рабочее напряжение конденсаторов в обеих схемах должно быть в 2.2 раза больше номинального напряжения.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого следует взять любой из 6 наружных выводов электродвигателя и присоединить его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1 ,а его конец - С4. Аналогично найдем начало и конец второй обмотки и обозначим их С2 и С5, а начало и конец третьей - С3 и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигатели согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим электродвигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную часто­ту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке следует поменять местами выводы С1 и С4. Если это не помогает, концы первой обмотки необходимо вернуть в первоначальное положение и теперь уже выводы С2 и С5 поменяйте местами. То же самоё сделайте; в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов обмоток строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.
Для изменения направления вращения ротора АД, включенного в однофазную сеть по схеме «треугольник» (см. рис.5), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения АД, включенного в однофазную сеть по схеме «звезда» (см. рис.7), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний, шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, и смазать их.
 
Назад
Сверху