Что нового?
Пикник ТВ

This is a sample guest message. Register a free account today to become a member! Once signed in, you'll be able to participate on this site by adding your own topics and posts, as well as connect with other members through your own private inbox!

Уроки начинающим электронщикам

Administrator

Administrator
[shadow=blue]Урок №1: Инструменты[/shadow]
В первом уроке я расскажу, какие инструменты понадобятся тебе для дальнейших занятий. Во первых, самое главное это паяльник, он должен быть мощностью от 20 до 60 ватт. Предпочтительнее паяльник мощностью 20-25 Ватт, так как паяльник в 60 Вт слишком громоздкий и слишком мощный. Во вторых, нужны припой и канифоль, правда, можно купить "припой с канифолью" тогда не надо будет покупать канифоль отдельно. В третьих понадобятся ножницы, плоскогубцы, отвертка и напильник. Желательно еще иметь небольшие тиски. Чуть не забыл, еще надо много толстого картона...Также, в дальнейшем для изготовления качественных плат тебе понадобится текстолит, хлорное железо или медный купорос.

Вот вообщем то и все. Но одного паяльника мало, нужно еще научиться паять. Это не сложно, берете например один проводок, оголяете его конец ножницами (а еще лучше бокорезами), кладете его этим концом на кусок канифоли и несильно нажимаете сверху паяльником (ГОРЯЧИМ!). Теперь на проводке появился тонкий слой канифоли, после этого берете паяльником каплю припоя и размазываете по "канифольной" части проводка. Дуете. Все, теперь на проводке красиво блестит застывший припой. Так надо обрабатывать каждую из спаиваемых частей. Такая обработка называется залуживанием. После обработки кладете одну часть на другую и капаете небольшую каплю припоя на них, теперь они будут прочно спаяны между собой. Бывает, что ножки деталей окисляются и они плохо залуживаются. Для этих целей понадобится мелкая наждачная бумага. Можно также использовать различные кислоты для пайки.
Посмотреть вложение 1
Позже, для тестирования схем тебе понадобится тестер (вольтметр,амперметр,омметр). На приборе лучше не экономить и покупать хороший, он значительно сэкономит ваше время при наладке схем. Если вы планируете всерьез занятся радиоэлектроникой, то советую приобрести вам осциллограф. Очень полезная штуковина.

Небольшое дополнение про инструменты для радиолюбителей от модератора форума жучки - Werewolf'а.

Теперь хотел поговорить по инструменту для радиолюбителя. Это строго для начинающих. Открою тайну, что те "кусачки" которыми вы кусаете провода, в действительности называются бокорезы! На фото, слева направо и сверху вниз.
1 Устройство с линзой и двумя крокодилами на шарнирах. Удобна и дешева. Сейчас пользуюсь редко, есть настольная лампа с линзой.
2 Очки увеличительные с подсветкой. Не пытайтесь купить "часовые" линзы!
3 Мультиметр - неотъемлемая часть вашей лабы. На фотке дорогой, а вы можете обойтись в первое время каким-нибудь подешевле.
4 Зеленая баночка это "оксидал" - белый порошок, чистит жало паяльника, просто опускаете в него нагретый паяльник, а достаете абсолютно чистый. На фото под оксидалам импортная паяльная паста. Такая баночка у нас стоит 50-100 руб, мне хватает на год. Очень удобна тем, что не оставляет следов канифоли и в процессе настройки можно просто вытереть тампоном.
5 Припой я использую обычно ПОС 61 или импортный аналог диаметром 1 и менее миллиметров.
6 Контрольный приемник. На фото сканирующий импортный 420-450 МГц. Я им пользуюсь при настройке на соответствующую частоту.
7 Паяльная станция. Регулирует температуру от 150 до 440С 18вт. Но это не обязательная опция, можно воспользоваться паяльником на 8-25вт.
8 Антистатический браслет. Очень полезная штука, если вы работаете с микросхемами и полевыми транзисторами. Снимает статическое электричество с вашего тела исключая пробой. На деле просто кусок провода с резистором 1МОм, подключенный к батарее отопления.
9 Два пинцета прямой и угловой, старайтесь выбрать помягче -руки меньше устают.
10 Отсос. В общем ручной компрессор для удаления припоя при попытке выпаять деталь микросхемы. Без него выпаивать очень тяжело.
11 Неметаллическая отвертка! Сделана из композитного фарфора. Если нет, можно сделать из пластмассы. Нужна при настройке контуров, потому как не оказывает влияния!
12 Бокорезы - тут много вариаций, лично мне нравятся такие!
13 Две небольшие отвертки для сборки-разборки аппаратуры.
14 Круглогубцы и утконосы. Круглогубцами удобно формировать ножки элементов перед пайкой в плату. Ну с утконосами пояснять не надо.
15 В самом низу тряпка для протирки жала паяльника. Можно любую натуральную.

Чуть не забыл! Сверлильный станочек! Без двигателя стоит 250руб на рынке. Зажимает от 0.4 до 4мм, на фото вставлено сверло 4мм (сверлил отверстия для крепления платы частотомера) .
http://cxem.net/beginner/beginner1.php
 
[shadow=blue]Урок №2: Первая конструкция[/shadow]
Я не буду тянуть резину, а сразу приступлю к делу. Твоя первая конструкция будет называться - "Усилитель низкой частоты"!

Что для него понадобится:

Транзистор МП 41 Б - VT1.
Конденсатор электролитический 10 мкФ * 16 В - C1.
Конденсатор керамический 0,01 мкФ - C2.
Резистор 150 кОм - R1.
Наушники ТОН-2 или другие высокоомные - BA1.
Батарейка 4,5 В - GB1.
Выключатель любой миниатюрный - SA1.
Не пугайся этих диких названий! Сейчас все объясню.
Посмотреть вложение 2
Остальное, думаю понятно.

Схема:
Посмотреть вложение 1
Внимательно рассмотри схему! Надеюсь, ты понял как все там обозначается. Чтобы правильно спаять этот усилитель надо:

Вырезать подходящий кусок картона.
Нарисовать на нем эту схему.
Проделать дырки в картоне под лапки радиодеталей.
Залудить лапки радиодеталей (см. урок 1).
Вставить радиодетали в дырки на картоне.
Загнуть лапки радиодеталей с другой стороны картона и совместить их друг с другом по схеме.
Спаять лапки вместе.
Забыл самое главное!!!
Транзистор не все равно как ставить! У него есть три вывода - 1-База, 2-Эмиттер, 3-Коллектор. На схеме база выходит из середины, эмиттер помечен стрелочкой, а коллектор это тот который остался. Ты спросишь - "А как же их отличить друг от друга, ведь на транзисторе они никак не отмечены!". Отвечаю, так: Это только для МП 35 - МП 42! У разных транзисторов разные корпуса и следовательно маркировка, маркировку ты можешь найти в справочниках или посмотреть здесь!

Теперь включи усилитель и надень наушники, ты должен услышать равномерный шум. Если глухо как в гробу, то проверь правильно ли поставлен транзистор, батарейка, электролитический конденсатор (на нем написано, где плюс), хорошо ли спаяны выводы и нет ли где замыкания. Если тебе кажется, что все правильно, а он все равно не работает, то позамыкай вход усилителя, ты должен услышать щелчки. Все проверь! Если уж совсем никак, то внимательно перечитай эту страницу сайта.

Список радиоэлементов

http://cxem.net/beginner/beginner2.php
 
[shadow=blue]Урок №3: Теория начинающим[/shadow]
Поздравляю! Ты собрал свой собственный усилитель! Но ты еще совершенно не понимаешь принцип его работы. Я отступаюсь от общей схемы обучения и рассказываю теорию после практики. Еще раз смотрим на схему
Посмотреть вложение 3
Сначала, как и обещал, расскажу о транзисторе. По началу используй транзисторы типов МП39 - МП41, их легче паять и они имеют структуру p-n-p. При подаче на базу транзистора типа n-p-n положительного напряжения он открывается, т. е. сопротивление между эмиттером и коллектором уменьшается, а при подаче отрицательного, наоборот - закрывается и чем сильнее сила тока, тем сильнее он открывается или закрывается. Для транзисторов структуры p-n-p все наоборот. В нашем усилителе очень хорошо выявлено это свойство транзистора. Конденсатор С1 поставлен для того, чтобы, когда мы подключим к входу усилителя микрофон или головку магнитофона постоянный ток не попал на базу транзистора. Ведь постоянный ток батарейки не может проходить через конденсаторы, а вот переменный ток от микрофона или головки - запросто! И вот этот самый переменный ток попадает на базу транзистора, и он то открывает, то закрывает его в такт тому что говорят в микрофон. А через коллектор и эмиттер транзистора (и наушники) течет относительно болшой ток батарейки и он тоже изменяется в такт колебаниям микрофона. Во как! Был ток в сотые доли вольта от микрофона, а стал в единицы вольта от батарейки. Поэтому усилитель и называется усилителем.

Вопрос: "Зачем резистор R1?".
Ответ: "Через него подается на базу транзистора маленькое закрывающее напряжение смещения для стабильной работы транзистора."

Вопрос: "Зачем конденсатор С1?" Ответ: "Не знаю, и без него все хорошо работает, но в книжках написано, что он блокировочный."

До усиления:
Посмотреть вложение 2
После усиления
Посмотреть вложение 1
Посмотри на эти рисунки, может ты видишь такое впервые, это синусоиды. По ним можно определить частоту колебаний тока, т. е. сколько раз в секунду ток изменит свою полярность.

T - период.

Например, 1 мм равен 0,0001 секунды, измерим расстояние от однои вершины до другой, пусть оно равно 50 мм, умножаем 50*0,0001=0,005 теперь расчитаем частоту по формуле:

f=1/T

где f - частота, получаем 1/0,005=200 (Герц). Сокращенно - 200 Гц.
http://cxem.net/beginner/beginner3.php
 
[shadow=blue]Урок №4: Радиоприемник начинающим[/shadow]
Посмотреть вложение 3
На этой схеме изображен самый простой детекторный радиоприемник. Здесь видно две новых детали - С1 - переменный конденсатор и L1 - катушка индуктивности.

Переменный конденсатор Конденсатор который может изменять свою емкость при вращении его ручки. Условное обозначение
Посмотреть вложение 2
Катушка индуктивности. Катушка из проволоки имеет индуктивность измеряющуюся в Генри сокр. Гн. Условное обозначение
Посмотреть вложение 1
Переменный конденсатор С1 можно применить ёмкостью 12/495 пФ . Блокировочный конденсатор С2-3300-6600 пФ.

Катушку индуктивности удобнее всего намотать на картонный или пластиковый каркас с параметрами: наружный диаметр 20 мм, длина 58— 60 мм, толщина стенок 1—2 мм. При отсутствии готового каркаса можно склеить его из плотной бумаги.
Катушку наматывают медным проводом в эмалевой изоляции (марка провода ПЭ, ПЭЛ и ПЭВ) диаметром 0,15—0,25 мм.
Диод можно взять любой германиевый Д2, Д9, Д311 и т.д.

Длинна антенны составляет 15-30м,антенна выполняется из медного многожильного провода,на концах антенны обязательно надо ставить изоляторы.
У детекторного приёмника нет усилительных каскадов. Он работает только от энергии радиоволны принимаемой станции.
Чем длиннее антенна тем больше энергии наведётся на антенну, тем громче будет звучать приёмник. Применение заземления также улучшают качество приёма.

Наушники для ДП требуются высокоомные 1600-2200 Ом. Можно подключить и низкоомные, но через согласующий трансформатор. В качестве согласующего трансформатора может служить сетевой трансформатор 220/12в. Первичную обмотку подключают к приёмнику а ко вторичной обмотке обычные наушники.

Хорошего приёма!

Список радиоэлементов

http://cxem.net/beginner/beginner4.php
 
[shadow=blue]Урок №5: Собственно приёмник[/shadow]
Итак, приступим к практике. Вот схема твоего первого приемника:
Посмотреть вложение 2
Тут для тебя нет ничего нового, может только поясню насчет катушек. Если ты видишь на схеме две катушки с линией между ними, то это значит, что эти катушки имеют индуктивную связь. Если мы расположим рядом две катушки индуктивности и в одной из них начнем изменять ток, то во второй катушки появится ЭДС. Индуктивная связь между катушками L1 и L2 нужна для связи контура с остальной частью приемника. Связь бывает индуктивная, кондуктивная и емкостная.
Индукт. Кондукт. Емк.
Посмотреть вложение 1
Анализ. Сигнал радиостанции выделенный колебательным контуром, с катушки L2 через конденсатор С1 попадает на базу транзистора, и тут все как в усилителе из урока 3, разница лишь в том, что транзистор нагружен не на наушники, а на резистор R2. С резистора R2 сигнал поступает на детектор с удвоением напряжения. Он работает так: в первый полупериод сигнала конденсатор С2 заряжается через диод VD1, а во второй полупериод разряжается через диод VD2.

Ладно, еще дозу теории ты получил, теперь конструкция. Катушку, как я уже сказал, надо наматывать на ферритовом стержне длиной около 10 см, она должна содержать 70-80 витков медного изолированного провода диаметром 0.2 мм, это провод марки ПЭВ 0,2. (для особо умных поясняю, что проводом я называю проволоку. Конденсатор С1 любой переменный конденсатор с максимальной емкостью не менее 100 пФ. Резисторы: R1 - 100 кОм, R2 - 3,3 кОм. Конденсаторы постоянные все 0,01 мкф. Транзистор любой маломощный высокой частоты например КТ315 с любым буквенным индексом, можно использовать транзистор структуры p-n-p, только поменяй полярность включения батарейки и диодов. Диоды - Д9В. Наушники высокоомные например ТОН-2 или "Гамма".

Список радиоэлементов

http://cxem.net/beginner/beginner5.php
 
[shadow=blue]Как проверить транзистор,диод,конденсатор,резистор и др[/shadow]
Посмотреть вложение 6Как проверить работоспособность радиодеталей

Сбои в работе многих схем иногда случаются не только из-за ошибок в самой схеме,но так же в том что где-то сгоревшая или просто бракованная радиодеталь.

На вопрос как проверить работоспособность радиодетали, во многом нам поможет прибор который есть наверно у каждого радиолюбителя- мультиметр.

Мультиметр позволяет определять напряжение, силу тока, емкость, сопротивление,и многое другое.
Как проверить резистор

Постоянный резистор проверяется мультиметром, включенным в режим омметра. Полученный результат надо сравнить с номинальным значением сопротивления, указанным на корпусе резистора и на принципиальной схеме.

При проверке подстроечных и переменных резисторов сначала надо проверить величину сопротивления, замерив его между крайними (по схеме) выводами, а затем убедиться в надежности контакта между токопроводящим слоем и ползунком. Для этого надо подключить омметр к среднему выводу и поочередно к каждому из крайних выводов. При вращении оси резистора в крайние положения, изменение сопротивления переменного резистора группы «А» (линейная зависимость от угла поворота оси или положения движка) будет плавным, а резистора группы «Б» или «В» (логарифмическая зависимость) имеет нелинейный характер. Для переменных (подстроечных) резисторов характерны три неисправности: нарушения контакта движка с проводящим слоем; механический износ проводящего слоя с частичным нарушением контакта и изменением величины сопротивления резистора в большую сторону; выгорание проводящего слоя, как правило, у одного из крайних выводов. Некоторые переменные резисторы имеют сдвоенную конструкцию. В этом случае каждый резистор проверяется отдельно. Переменные резисторы, применяемые в регуляторах громкости, иногда имеют отводы от проводящего слоя, предназначенные для подключения цепей тонконпенсации. Для проверки наличия контакта отвода с проводящим слоем омметр подключают к отводу и любому из крайних выводов. Если прибор покажет какую-то часть от общего сопротивления, значит имеется контакт отвода с проводящим слоем.
Фоторезисторы проверяются аналогично обычным резисторам, но для них будет два значения сопротивления. Одно до засветки — темновое сопротивление (указывается в справочниках), второе — при засветке любой лампой (оно будет в 10... 150 раз меньше темнового сопротивления).

Как проверить конденсаторы

Простейший способ проверки исправности конденсатора - внешний осмотр, при котором обнаруживаются механические повреждения, например деформация корпуса при перегреве вызванного большим током утечки. Если при внешнем осмотре дефекты не замечены, проводят электрическую проверку.
Омметром легко определить один вид неисправности – внутреннее короткое замыкание (пробой). Сложнее дело обстоит с другими видами неисправности конденсаторов: внутренним обрывом, большим током утечки и частичной потерей емкости. Причиной последнего вида неисправности у электролитических конденсаторов бывает высыхание электролита. Многие цифровые тестеры обеспечивают возможность измерения емкости конденсаторов в диапазоне от 2000 пФ до 2000 мкФ. В большинстве случаев этого достаточно. Надо отметить, что электролитические конденсаторы имеют довольно большой разброс допустимого отклонения от номинальной величины емкости. У конденсаторов некоторых типов он достигает- 20%,+80%, то есть, если номинал конденсатора 10мкФ, то фактическая величина его емкости может быть от 8 до 18мкФ.
Посмотреть вложение 5
При отсутствии измерителя емкости конденсатор можно проверить другими способами.
Конденсаторы большой емкости (1 мкФ и выше) проверяют омметром. При этом от конденсатора отпаивают детали, если он в схеме и разряжают его. Прибор устанавливают для измерения больших сопротивлений. Электролитические конденсаторы подключают к щупам с соблюдением полярности.
Если емкость конденсатора больше 1 мкФ и он исправен, то после присоединения омметра конденсатор заряжается, и стрелка прибора быстро отклоняется в сторону нуля (причем отклонение зависит от емкости конденсатора, типа прибора и напряжения источника питания), потом стрелка медленно возвращается в положение «бесконечность».
Посмотреть вложение 4
При наличии утечки омметр показывает малое сопротивление - сотни и тысячи ом, — величина которого зависит от емкости и типа конденсатора. При пробое конденсатора его сопротивление будет около нуля. При проверке исправных конденсаторов емкостью меньше 1 мкФ стрелка прибора не отклоняется, потому что ток и время заряда конденсатора незначительны.
При проверке омметром нельзя установить пробой конденсатора, если он происходит при рабочем напряжении. В таком случае можно проверить конденсатор мегаомметром при напряжении прибора, не превышающем рабочее напряжение конденсатора.
Конденсаторы средней емкости (от 500 пФ до 1 мкФ) можно проверить с помощью последовательно подключенных к выводам конденсатора наушников и источника тока. Если конденсатор исправен, в момент замыкания цепи в головных телефонах слышен щелчок.
Конденсаторы малой емкости (до 500 пФ) проверяют в цепи тока высокой частоты. Конденсатор включают между антенной и приемником. Если громкость не уменьшится, значит, обрывов выводов нет.

Как проверить трансформатор, дроссель, катушку индуктивности

Проверка начинается с внешнего осмотра, в ходе которого необходимо убедиться в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки; в отсутствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.
Наиболее частая причина выхода из строя трансформаторов (и дросселей) — их пробой или короткое замыкание витков в обмотке или обрыв выводов. Обрыв цепи катушки или наличие замыканий между изолированными по схеме обмотками можно обнаружить при помощи любого тестера. Но если катушка имеет большую индуктивность (т. е. состоит из большого числа витков), то цифровой мультиметр в режиме омметра вас может обмануть (показать бесконечно большое сопротивление, когда цепь все же есть) — для таких измерений «цифровик» не предназначен. В этом случае надежнее аналоговый стрелочный омметр.
Если проверяемая цепь есть, это еще не значит, что все в норме. Убедиться в том, что внутри обмотки нет коротких замыканий между слоями, приводящих к перегреву трансформатора, можно по значению индуктивности, сравнив ее с аналогичным изделием.
Когда такой возможности нет, можно воспользоваться другим методом, основанном на резонансных свойствах цепи. От перестраиваемого генератора подаем синусоидальный сигнал поочередно на обмотки через разделительный конденсатор и контролируем форму сигнала во вторичной обмотке.
Посмотреть вложение 3
Если внутри нет межвитковых замыканий, то форма сигнала не должна отличаться от синусоидальной во всем диапазоне частот. Находим резонансную частоту по максимуму напряжения во вторичной цепи. Короткозамкнутые витки в катушке приводят к срыву колебаний в LC-контуре на резонансной частоте. У трансформаторов разного назначения рабочий частотный диапазон отличается — это надо учитывать при проверке:
- сетевые питающие 40...60 Гц;
- звуковые разделительные 10...20000Гц;
- для импульсного блока питания и разделительные .. 13... 100 кГц.
Импульсные трансформаторы обычно содержат малое число витков. При самостоятельном изготовлении убедиться в их работоспособности можно путем контроля коэффициента трансформации обмоток. Для этого подключаем обмотку трансформатора с наибольшим числом витков к генератору синусоидального сигнала на частоте 1 кГц. Эта частота не очень высокая и на ней работают все измерительные вольтметры (цифровые и аналоговые), в то же время она позволяет с достаточной точностью определить коэффициент трансформации (такими же они будут и на более высоких рабочих частотах). Измерив напряжение на входе и выходе всех других обмоток трансформатора, легко посчитать соответствующие коэффициенты трансформации.

Как проверить диод,фотодиод

Любой стрелочный (аналоговый) омметр позволяет проверить прохождение тока через диод (или фотодиод) в прямом направлении — когда «+» тестера приложен к аноду диода. Обратное включение исправного диода эквивалентно разрыву цепи.
Цифровым прибором в режиме омметра проверить переход не удастся. Поэтому у большинства современных цифровых мультиметров есть специальный режим проверки p-n-переходов (на переключателе режимов он отмечен знаком диода). Такие переходы есть не только у диодов, но и фотодиодов, светодиодов, а также транзисторов. В этом режиме «цифровик» работает как источник стабильного тока величиной 1 мА (такой ток проходит через контролируемую цепь) —- что совершенно безопасно. При подключенном контролируемом элементе прибор показывает напряжение на открытом p-n-переходе в милливольтах: для германиевых 200...300 мВ, а для кремниевых 550...700 мВ. Измеренное значение может быть не более 2000 мВ.
Однако, если напряжение на щупах мультиметра ниже отпирания диода, диодного или селенового столба, то прямое сопротивление измерить невозможно.
Посмотреть вложение 2
Проверка биполярного транзистора

Некоторые тестеры имеют встроенные измерители коэффициента усиления маломощных транзисторов. Если у вас такого прибора нет, то при помощи обычного тестера в режиме омметра или же цифровым, в режиме проверки диодов, можно проверить исправность транзисторов.
Проверка биполярных транзисторов основана на том, что они имеют два n-p перехода, поэтому транзистор можно представить как два диода, общий вывод которых – база. Для n-p-n транзистора эти два эквивалентных диода соединены с базой анодами, а для транзистора p-n-p катодами. Транзистор исправен, если исправны оба перехода.
Посмотреть вложение 1
Для проверки один щуп мультиметра присоединяют к базе транзистора, а вторым щупом поочередно прикасаются к эмиттеру и коллектору. Затем меняют щупы местами и повторяют измерение.

При прозвонке электродов некоторых цифровых или мощных транзисторов следует учитывать, что у них могут внутри быть установлены защитные диоды между эмиттером и коллектором, а также встроенные резисторы в цепи базы или между базой и эмиттером. Не зная этого, элемент по ошибке можно принять за неисправный.
http://radiostroi.ru/index.php/novichk/10-osnelektroniks/68-kakproverit.html
 
Для прозвонки и подборки с похожими параметрами (тиристоров,симисторов ,мощных транзисторов ) лучше всего подходят
стрелочные приборы , да и электролиты тоже - на разных пределах кОм (потренировавшись) можно определить емкость -если стёрта надпись
 
Назад
Сверху